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FOREWORD

This repori presents the results of investigations conducted during the develop-
ment of the filter/predictor software for the Operational Digital Computer Program,
improved Gunfire Control System MK 68.

The report was reviewed by T. M. Alexander, Jr. of the Warfare Aralysis
Department.
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NOMENCLATURE

Target bearing angle (from north)
Test level (nondimensional)
Target elevation angle (from horizontal)
Observation matrix

Gain matrix

State error covariance matrix
Process noise covariance matrix
Observation crror covariance matrix
Target range

Square root ccvariance matrix
Jacobian of transformation
Memory length time

Time

Measurement error vector
Extrapolated value of §

Process noise vector

State vector

East, north. vertical target position
Mcasurement vector

Defined Equations (4.9)

Time interval between filter cycles
Kronecker delta

State error vector

White driving noise vector

Defined Equation (6.4)

Sensitivity criterion

Data compression factor
Residual vector
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Standzrd deviation

Correiztion time constant
Transition matrix

Measurement noise shaping matrix
Aufocovariance matrix

Frequency (or angular rat=)

Actual

Cartesian

Filter value

Linearized

Mancuver

Noimalhzed

Polar {spherical)

Predictzd

Prefilter

Position, velocity. accekeration

Threc-dimensional
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I. INTRODUCTION

This report is designed to give the reader an in-depth view of the development of an
adaptive. Kalman, target tracking filter. Emphasis is placed on the synthesis and analysis so
s to convey the rationile for various design decisions. Since this filter was specifically de-
veloped for the impreved (digital) MARK 68 Gunfise Control System (GFCS). the parametric
studies necessarily :eflect values characteristic to such systems and their particular scenarios.”
To the extent possible, however, the analysis has been gencralized and deals in a broad
manner with the problem of tracking and predicting the staie of a general target for fire
control or other purposss. The MARK 68 GFCS is in fact multifunctional as it must be
able to track and engage targets of all types. For the most part, the various technigues used
in this filter;predictor are not new and can be found scattered througnout the literature, as
can be seen from the rather kengthy list of references. It is hoped. however., that this report
will be a useful reference for others who will work in this arca in that it combines these
various state-of-the-art concepts and brings them to bear on this particuler application. This
document summarizes work performed te date and also indicates the directions that future
investigations might take.

Lot us first consider the basic functions performed by a gunfire control system. As
shown in Figure 1.1, the heart of the system is the so-called predictor-ballistics loop, Es-
seatially. the ballistics section generates the possible four-dimoensional trajectorics (or

oW

TARGET ;
_PREDICTION TIME

: i }'

SENSOR —={ FILTER = PREDICTOR |—=] BALLISTICS

L |

GUN ORDERS

Figure 1.1, Simple Functional Diagram of a Gunfire Contrel System

*A dewafliad ropoft deakne wkls with the MARK 6% GICS impienentiatios and porformanos =ill be publshad o1 3 Lo
date
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perhaps only terminal coordinates) of ownship’s projectiles. The prediction section must
supply similar information about the target trajectory. The loop is then iteratively closed
by matching the spatial and temporal coordinates of the projectile to the target to effect an
intercept. [In this report. we will be dealing only with the “front end” of the system. i.e..
from the target to the predictor. Quite obviously the predictor is the uitimate product re-
gured for tie front end of the loop. and this factor will be repeatedly stressed in this report.
If we had some other means of sprcifying the target trajectory. there would be no need for
the other eluments of the front end. In fact. of course the target trajectory is not directly
available to the fire contsol system. Instead. the sensor tracks the target’s current position.
supernintposing measuren:ent error in so doing. The purpose of the filter then is fo process
the noisy position measurements in such a manncr as to estimate the parameters required
for the prediction model. Such parameters m.zht inciude smooth current {arget position.
velocity. and aceeleration.

It is assumied for this report that measurements are made of target position only since
rates (.. Doppler. gyros. ¢ic. 1 are not currently available from GFCS sensors. 12 will be
assumed that these measurements have been stabilized (L2.. ownship angular motion removed}
and transformed to Cartesian coordinates. The implications of this transformation will be
considered a2t length later in the report. The use of stabilized coordinates. however, is
probably witiversal sinoe one docs not want the target motion filter (o have to desi with
ownship angular motion. The origin of the coordinate system shall be a reference point on
ownship and common to all scnsors. Tracking. filtering, and prediction wil therefore be
perfarmed in ownship coordinates. This “ownship coordinate system™ is defined simply as

Xiwod®) = Xpi8) - X, (1) ii.h

where Xyt and X,.. (1) are the motion of the tarzet and of ewnship relative to some earth-
fixed or incriial seference frame.” Whenever it 15 necessary (o transform to an inertial frame,
say for purposes of ballistic computations. or to account (if necessary) for ownship mancu-
vers, Equation € 1.1) and its derivatives would be ussd. The reason for this choice of
Cartesian ownship coordinates for target filtering and prediction is simply that the motion
of most targets in 3 GFCS scenario is better behaved - or more closely lincar—in this system
than ir others. One must censider the fact that, if a hostile target is so closc as to be in the
range of fire of 3 gua system:. most likely the engagement is mutuzl in that both ownship
and target are mancuverning relative 1o cach eiher in order to cffect their own fire control
strategy.

Let us now consider the nature of this problem from the point of view of crror sources
and constraints on the solution method. The prediction error. that is the crror in determin-
ing the projectile-tasget inicrcept point. basically results from two (not necessarily independent)

*Sec the ecton on Notscnchture 3t the Bopisoing of this report
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sources: predictor modeling error and filtering or estimation error. Prediction modeling
error occurs because, not knowing the target strategy, an incorrect functional form of the
predictor is utilized. While we strive to construct a reasonable approximation for the actual
prediction model of the general unknown target, we can never do this exacily. Therefore,
even if we effected perfect filtering (i.e.. perfect estimation of target parameters such as cur-
rent position and rates). we would nevertheless suffer prediction errors due to unaccountable
target maneuvers during the prediction time. Of course, even if target modeling were perfect.
there would remain estimation errors due to sensor measurement noise which would be
extrapolated from current time by the predictor. The Jominant variable. an effect which
significantly determines the relative and absolute magnitude of these prediction errors. is the
prediction time. We shall see that prediction errors are magnified exponentially with in-
creased prediction time.

Target modeling error contributes to the filter error as well as the prediction error.
particularly for manecuvering targets. In general. a target will probably be manecuvering in
some unknown fashion—at least as far as the GFCS is concerned -when the target is in range
of ownship guns. There are several reasons for this. First, the target probably has a mission
to accomplish or it would not be there. The target has a particular strategy to achieve that
goal: and very often that goal aud strategy are known to members of ownship crew. Due to
the complexity of this information. however. such knowledge is not used (except very
indirectly) by current gun-fire control systems. Examples of such targets are anti-ship
miissiles that terminally home on their targets or other weapons platferms (such as fighter
bombers). which must mancuver in specific ways in order to solve their fire control problem.
(The goal-oriented target and its possible prediction by a fire control system are the subject
of another report to be published.) Another important reason for target mancuvers is to
evade ownship weapons  Certainly. manned targets in runge of our guns would bu well
aware of the principles of GFCS operation and behave accordingly. It is also probable that
missiles will be made capable of evasive action cither by preprogramming or by being under
remote control. There are other reasons for target maneuver such as atmospheric turbulence.
target sensor-induced errors, target control system behavior ete. In any case. it is not pos-
sible to fully and deterministically model the anticipated motion of a general target, and we
must live with a certain amount of tracking and prediction error due to this limitation. We
shall find that there are fundamental limitations on the ability to track mancuvering targets.
A mancuver will subsequently be defined or purposes of this report as any target motion
that tends to cause a certain filter implementation to diverge (i.e.. estimation errors become
large).

Several other tuctots affect the filter estimation error and these must cach be considered.

Tracking sensor accuracy is an important one. A very important matter is filter settling
time. In a situation with more than one target (o be engaged or when target acquisition and
tracking commence late, it is mandatory that the filter settle quickly. within a few seconds.
Computational constraints on such factors as data rate and model complexity must be

IPURD.




considered. Computer word length and real-time implementation constraints pose severe
limitations on what one might hope to accomplish when dealing with on-line filtering and
prediction. In short, the problem of target estimation for gunfire control application must
be considered in toto, and in so doing, the filter designer finds himself facing many limita-
tions, both fundamental and practical. that must be recognized if a reasonable design is to
be realized. In the final analysis, judgments must be made that, on occasions, are difticult
to justify with theoretical rigor. and filter design becomes somewhat an art as well as a
science.

Before commencing the actual report, a brief discussion of the nature and structure of
this study is in order. The investigation. to the extent possible. is primarily para:etric in
that the effects of individual parameters affecting performance were isolated, wherever pos-
sible. in order to assess the sensitivity of performance to variation of the parameters. It
should be emphasized that many of the results presented in this report were based on swdies
designed to reveal the relative merits of one technique or parameter with respect to another
and, as such, ma - 10t always be indicative of actual implemented performance when in-
corporated wita cines techniques and parameters in an actual tracking situation. The
criterion for perfor:nance. or “norm.” was chosen, due to the nature of the gun fire control
problem, to be prediction performance. For a “nominal” Navy gun, a time of flight (or
prediction time) of 10 seconds was chosen as typicai for engagement of air targets and is
used consistently throughout this report. The actual statistical form of the prediction error,
used to evaluate the relative merits of parameters or filter formulations, depends upon the
J situation. Whenever practical. the error covariance approach was utilized since it essentially
represents the result of a perfect Mornte Carlo study (repeated simulation trials plus
averaging). The error covariance approach can be used to evaluate optimal or suboptimal (if
f the ““real world™ or truth model is known) performance. There are many cases, however,

‘ when thie truth model is not readily available, and simulation must be employed with root-
i mean-square prediction errors used as a norm. This is particularly true in evaluating a non-
lincar adaptive filter against various nonlinear trajectories. Ultimately. of course, the filter
must be evaluated in relatively uncontrolled circumstances using actual tracking data of real
target trajectories.

Finally. let us consider the spatial problem. Measurements of target position are made
in a spherical polar coordinate frame. but targets are generally not linearly described in such
a frame. Therefore. a nonlinearity is going to appear in the full three-dimension problem.
This consideration was postponed until the last chapter. and all sections until then discuss
only one-dimensional estimation of target motion as a function of time. The reader may
consider this single “channel” to be one direction of some orthogonal system to be defined
later.

Since the author has noticed an occasional tendency among persons unfamilar with
Kalman filtering to regard the technicue as exceedingly complex. mysterious and/or

I 4
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omnipotent, he feels compelled to advise the reader that the antithesis is probably much
closer to the truth. In the next section, the Kalman filter will be introduced and, throughout
this report, the reader will note that performance remains limited, as it must be, by the
quality and quantity of information available.

II. GENERAL DESCRIPTION OF THE DISCRETE KALMAN FILTER

In this section, the concepts and equations of Kalman filters will be very briefly re-
viewed in order to familiarize the reader with the notation and the types of information re-
quired to construct a filter of this type. The theorctical elegance and practical utility of this
estimator have made it a popular subject for both mathematicians and engineers in recent
years. For the reader who wishes to pursue the subject in greater depth, the author recom-
mends such literature as Gelb (1974). Sorenson (1966) or on¢ of many other textbooks that
deal with estimation theory such as Morrison (1969) or Sage and Melsa (1971).* We will
deal here only with the discrete formulations since they are the more natural for digital
computer implementation.

Before considering the equations, we might first qualitatively define a Kalman filter.
The Kalman filter is a lincar minimum-variance estimator. In fact, it is a recursive formula-
tion of the minimum variance rules for combining certain a priori information with a sequence
of observations that contain noise. We might also point out now that the required a priori
information must usually be chosen with considerable care if one is to achieve the desired
results. A Kalman filter is also a maximum-likelihood estimator (and in that sense an optimal
lincar or nonlinear filter) but only when the errors are uncorrelated and Gaussian. Of
course, as mentioned in the Introduction, we really do not expect to operate our filter under
optimal conditions due primarily to target modeling crrors and also to correlated and per-
haps slightly non-Gaussian measurement errors. Indeed, most applications of the Kalman
filter are suboptimal. Kalman filters often are actually designed to be suboptimal. This
frequently occurs when the dimension of the true state vector is so large as to render the
computations impossible to effect on a selected digital computer. Of course, we strive to
approach optimality within the imposed computational constraints and do just that when
circumstances permit. The fact that we can often approach optimal filter performance is
therefore one important rcason for selecting a Kalman filter.

Another equally important reason is the inherent flexibility and control one has over
the filtering process in order to maintain desired or expected filter performance. A signifi-
cant computational advantage over certain other filtering techniques (such as a Bayescan
estimator) is also enjoyed by Kalman filters due to a reduced matrix inversion burden. Singer
and Behnke (1971). in one of the best papers on the subject, compare five types of filters

*See References.



in terms of tracking accuracy and computational requirements when tracking maneuvering
targets in a tactical application. They considered first and second order polynomial Kalman
filters (to be discussed in the next section); an alpha-beta filter (a recursive least squares
filter with a first order target model): a Wiener filter (steady-state Kalman filter); and a
simple two-point extrapolator. The second-order F.alman filter was found to be the most
accurate. In a later section. we shall also demonstrate that it is possible to significantly
reduce by more than an order of magnitude--the computational burden of 2 Kalman filter.
It is generally accepted that. under optimal conditions. a Kalman filter will out-perform
other data-processing algorithms such as those based upon least squares. This factor, although
important. is probably not in itself justification for implementing a Kaiman filter since,
under optimal conditions. almost any algorithm will perform acceptably. The real advan-
tage of a Kalman filter is under suboptimal conditions. The Kalman filter “thinks’ it knows
how well it is performing and can be made to determine when it is not performing properly.
Then. as just mentioned. the Kalman filter can utilize its flexibility to adjust the covariance
and regain calculated performance. These concepts will be discussed in much greater depth
in the section on adaption.

The target is assumed to be modeled by a linear. discrete. system model. as shown in
Figare 2.1(a). The equation tor the system is:

xftk+ 1) = o(k + 1. k) x(k) + w(k) 2.1)
The system at time t(k) is characterized by a state vector x(k) of dimension n. The state
vector is assumed to propagate linearly according to an (n X n) transition maurix ¢k + 1. k).
For purposes of this presentation. no control input or known forcing function will be
considered.

Any unmodeled effects will be assumed to be random or “'nondeterministic’ and are
lumped into a term (the last term-w) called “process noise.™ The random process noise
sequence has known statistics given by

Ejwk)! =0 {2.2)
Elwi wlk)] = Ofk) o, (2.3)

The actual magnitude of Q is required by the Kalman filter for proper (optimal) operation.
We shall see that of'ten this information is not available a priori and Q must be adjusted dur-

ing operation.

In Figure 2.1th). we assume we have measurements .’K) of dimension m, related to the
state vector by an (m X n) “observation”™ matrix H(k) (also called the “matrix of partial
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derivatives™) corrupted with a zero-mean, Gaussian, white noise sequence v(k). That is.
2(k) = H(k) x(k) + w(k) (2.4)
where
Efv(k)] = 0 (2.5)
Elv(G) ¥T(k) = R(K) 8 (2.6)
[ Notice that the use of the H matrix in Equation (2.4) readily allow. th« mixing ol measure-
ments of different types. ]
It is further assumed that
E{vG)wTk)} = 0 2.7
The basic recursive, linear estimation problem is to determine an estimate X(kik) of
x(k) that is a lincar combination of the previous estimate and the current measurement as
in Figure 2.1{(c..
We find we can write this as
«(kik) = x{klk- 1) + K(k) »(kik- 1) (2.8)
wiere
x(kik- 1 = o(k. k- Dx(k-lk-1) (2.9)

is the extrapolated estimate at (k). i.c.. the estimate at t(k) based on measurement data
through t(k ~ 1). The a pr.ori residual vector of dimension m is defined

pkik- D) = 2tk) - HK) k(klk - 1) (.10

and Kk is the {n X mj gain matrix. The difference between the estimate and the {rue state
tx the error vector

€Giky = x@Gik) - x() (21N
with associated (n X n) error covariance matrix defined as
PGik) = EleGik) €T Gik)l 215

The basis of *hie Kalman filter is the selection of the zain matrix in Equation (2.8) that
minimizes the trace of the errof covariance matrix. The solution to this probiem. found by

8
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Kalman (1960. 1951}, is well known and its derivation can be found in the previously men-
tioned references. The Kaliman filter is found to be o set of recursive matrix equations tha}
are usually written and implemented in two distinct steps. The “extrapoiation™ process
simply predicts the state vector, using Equation (2.9), and the crror covarinace via

P(kik- 1) = ¢k, k- DPkk-1lk- DTk k- 1)+ Gtk - 13 (2.13)

in this step. the error covzriance usually increases since we are advancing in time witiiout
benefit of new measurcments. The second step. the “update.” applies to the process of
reestimating the system to acknowledge that new information. z(k). is available. The optimal
gain is found to be

Kéky = Pkik - 1) HT (k) [H(k) P(kik - 1) HT (k) + Riky) ™! (2.140)

P(kik) HT (k) R (k) (2.14b)

Note thai the bracketed term to be inverted is of dimtension (m X m) which is usually
smailer titan the other matrices with dimension (n X n). The state can then be updated.
usiag Equation (2.8} ang the ¢rror covariance is updated as

Pekky = [1- KtkyHeky Ptkk- D) {2.15)

We find that the error covariance is reduced by the update step. usually more than it was
increased in the extrapola.ion step. causing a net reduction in the error covariance over a
complete cecie of the flter (unless the filter has reached steady-state operation). If there

1 no process noise in the systum (Q = 0). the error covarance terms eventually approach
zero (for the models considered in this poport). The error covariance significantly in-
flucnces the operation of the filier throu th the gain matrix. r general. the larger the

ersor covarianse, the larger the gains, Th= gain represents the selative weighting between the
old estimase and the new data. Initially thic error ¢ovariance and gain are large. which
reprosents the fact that we have not processed much data and therefore can not place much
confidence in our estimate. At long times. the error covanriance and gains approuch thewr
minimum values wnd reflect the idea that, haviag processed a large guantity of datia. we
place mor: contidonce in our estimate. 17 there is no grocess noise. eventually the error
covariance becowes small and the filter begins to virtually ignore sny acw data. This con-
dition can lead to filter divergence if the dynamics are - +7 3! suboptimatly, This problem
will be viscussed in a fater section. A filter with smad - 1 covariance and smai! gains will
oiien be referred to as having a long “memoty ™ (or “nirrow bardwidth™ for these who
consider filters from the frespuency domain). Cony <ly. o flter with Lurge crror con-
variance and gaina will e said te have a short menary or wids bandwidth.

Realization of the optimal Kalman filter. we have found. requires exact knowledge of

system dynamics, measurement statistics, and process noise statistics. In general. the informa-

tior. is never availubie exactly, For example, the roipstemont for measuremient satistics

9
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poses some interesting problems. It is often difficult, even under controlled laboratory con-
ditions, to obtain good error statistics for tracking instruments. It is frequently even more
difficult to apply these statistics with confidence when the sensor is employed in an un-
‘controlled environment such as a ship at sea operating against real targets. We therefore can
expect the values of the statistics assumed for the filter implementation to be slightly mis-
matched with the real world. Such a mismatch results in a suboptimal filter implementation.
In order to assess the cffect of such a mismatch. we resort to a technique known as a
“sensitivity analysis.” whereby we calculate the actual covariance of the suboptimal filter
implementation and compare it with the optimal “real-world” value possible. If a sub-
optimal filter of the same structure as the optimal but with unmatched parameters (leading
to suboptimal gains) is utilized, the actual error covariance P ¢ can be calculated with the
following equations.

Pact(klk= 1) =¢pcp(k. k= D Pyrertk- Tik- Doacr(k, k- 1) + Qacrk-1)
(2.16)

Pact(klk) = [1- K(k) Hyet(K)) Pacr(kik - 1) [T- K(k) HacT (k)T
.17
+ K(k) R‘,\('T(k) KT(k)

The subscript ACT means that the matrix is evaluated with the true parameters. The gain
K(k) is assumed to be calculated with assumed design values of the parameters. An impor-
tant point is that Equation (2.15) gives the actual error covariance only when the optimal
gain is chosen. Strictly speaking. Equations (2.16) and (2.17) can be used only to represent
the actual crror covariance when a suboptimal gain is chosen but the implementation of the
dvnamics and measurements are assumed correct. In fact, Gelb (1974) (pages 254 and 271)
argues that, under certain conditions present in this application, these actual error covariance
equations are correct even with incorrect transition and obscrvation matrices. In any case,
these cquations, often referred to as “‘simple sensitivity cquations,”™ are the equations used

. for all sensitivity work in this report and the more complex ‘“model-reference” equations
are not used. Presentation of sensitivity results has been found to be most recognizable if
the actual parameters are held fixed and the design values allowed to vary.

Since the Kalman filter equations are recursive, it is not neccssary to store a large
quantity of data. This factor, along with the basic computational simplicity of the equa-
tions. allows casy implementation on a digital computer. Notice that, since the gains are
not a-function of the actual measurements (for a truly lincar system), it is sometimes pos-
sible to precompute the gains and store them as opposed to calculating them in real time.
This precomputation can be performed only when values of ¢(k, k - 1), R(k), Q(k), and
H(k) can be predetermined for all k. With the initial value of P specified, all future valucs
of P(k) and K(k) can then be calculated. It will be shown that, for the Kalman filter appli-
cation in this report, it is not possible to predetermine the above matrices since they are
nonlinear functions of the actual target motion in real time. The fact that the Kalman
filter must propagate the error covariance matrix as it runs is an ambiguous requirement
since the filter derives both its power and its principal computational burden from thesc
matrix equations for P.

The basic Kalman filter algorithm, for the situation described in this section (i.e.,
lincar equations and uncorrelated noise), is summarized in Table 2.1. A FORTRAN [V
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Tatte 2.1. Kalman Filter Algorithm

Model x(k+1) = ¢k +1.k) x (k) + w(k) (1

Observations 2{k) = H(X) x(k) + v(k) ()

Statistics Elw(k)] = Efw(k)] = Elv(jywi(k}! = 0 3)

Elw() wT(k)} = Q(k) §jk £y

Elv(d v (k)] = R(k) 8jk (5

State Extrapolation x(kik- 1) = (k. k- D x(k- tik- 1) (6)
Covariance Extrzpolation

Pkik- 1) = ¢tk k- DPk- tk- 1glek. k-1 + Q(k- 1} (7

Gain K(k) = P(kik - D) HV Gk {HOO POk k- 1) HT(k) + R(K)} 7T (%)

State Update x(kik) = x(kik - 1) + Kk {26k) - HUK) Xtkik - 1] 5

Covariance Update
Pikik}

{1- Ktky Hiky} Pkk- 1) (102}

Pkik - 1) - KK HK Pekik- D HY K + Rk KTek) (10b)

version of this algorithm. called KALMAN, can be found in Appendix A. This subroutine
vas utilized for many of the simulations required for this study.

Itl. THE DERIVATIVE POLYNOMIAL TARGET MODEL

In this scction. the concepts and cquations of a one-dimensional. derivative poly-
nomial filter are introduced. The target model that is uitimately recommended ¢in Section
1V} is not exactly of a polynomial form but is quite similar in implementation. As such. the
parametric study of the polynomial filter in this scction is applicable in many ways to the
nonpolynomial target model selected in the next section and. indecd. is partly responsible
for that selection. It should also be mentionad that the covariance convergence study. re-
ported in this section. was conducted under the assumption of optimal conditions. By this.

we mean the following: the actual target mod-i is always assumed to be a polynomial match-

ing the filter model: the measurement errors are truly uncorrelated and Gaussian: and the
actual measurement ¢rror variances match the assumed (filter) measurement error variances,

Fo N
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Before continuing, a very brief discussion of the polynomial target model is in order.
In a general tracking filter application, whers e particular strategy being exercised by
the target is unknown, the form of the state vector and its propagation characicristics are
assumed and may or may not represent the true target motion over leng periods of time.
We do demand. however. the assumed target mod:i to provide a reasonably accurate approxi-
mation of target motion for short periods of time. The choice of a polynosnial. of course.
is then quite logical since the ability of a polynomial to approximate a process-at least
locally is well known. Indeed, the famous Weierstrass approximation theorem tells us that
pelynomials can approximate any continuous® function over a finite interval to any degree
of approximation desired. We are not really interested in considering very-high-order poly-
nomials. however. It must be emphisized that the gunfire control problem is not primarily
a fitting or smoothing problem btut a prediction problem. A higher-order {and thus more
accurate) po.ynomial fit of observed past data may not help us. and may even hinder us. to
more accurately predict future target position for long extrapolation times. Also. higher
order filters are computationally more burdensome and. dependii ¢ on the order of the
highest derivative. may not settle fast enough for the gunfire control probiem (as will be
shown). For these reasons. we consider polynomials with nonvanishing derivatives only
through third-order (erque). The important advantages of such low-order polynomials are
computational efficiency and limited necessity for a priori target maneuver strategies. For
a complete treatment of various polynomial filters, smoothers and predictors. the reader is
referred to Morrison (1969).

A. EQUATIONS i
Derivative polynomial models are described by the differential equatios

dr*l xqt)/dertl = ¢ (3.1)

where d® x/dt® is the highest nonvanishing derivative and n is referred to as the “order™ of
the model. The state vector is defined

Ix(v) dx(t)/dt  d2x(t)/di?

Xty
. drx()/dtn ] T 1.2)

Ixp(t) xa(t) x3(0) ... !na-}ﬂnr

[t}

*Alf targets with mass must, of cotrse, be continuous 1t poution and velocity  Acceleration muast alway's be Dnite but may
he effectively discontinuo sv. This imphics crque may sol always pxxg
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Notice that the state vector has dimonsion {n + 1). In the notation of continuous lincar

systems.
dx(t)/dt = F(r) x(1)
We can write the elements of the matrix F(t) as
G0 = 8- I<ij<(n+t]
where 8 1 is the Kronecker delta. The transition matrix is therefore
otk + LK) = (A=) 1 < ij<(n+l)
where

Ar=tk+1) - uky = 1/k

g-it =0 for j<i

For example. for n = 2, we find

ok+lL.ki=0= |0 1 At

0 0 I

e —

(3.3)

(3.6

L
-
ond
o

(3.8)

For putposes of this report. the data rate k (Hest2? will always be assumed to be constant so
that the transition matrix (2 fuaction of At only) is time-invariant. For the present. we will

ISSUMC PrOCess Noiwe is 7ero.

In our application. we will have zvailable measurements of position oniy. so that the

measurement vector and covariance reduce to scalars. That is,
z7i8) = [kl

Rk) = [o(k)

(3.9

£3.10}

where 02 is the measurement error variance. The clements of the tm X (n ¢ 1)) observation

matrix ate simply

£y

e




hiy(k) = 8;; 8 i=m=|

(.11
Il =j<(n+])
Forn =2, we find the row vector
Hk)y=H=1(1 0 0] (3.12)
The residual also reduces to a scalar quantity
v(klk - 1) = z(k) ~ Xy(klk- 1) (3.13)

The simplicity of the measurement matrices result in the gain calculations being cffected as
rather simple algebraic functions of the extrapolated error covariance. E.g., the gain is the
column vector with elements

Kitk) = Pyj(kik - /[P, (kk- D)+02(k)] j=1, n+1  (3.14)

B. INITIALIZATION

In order to specity completely a set of equations representing a derivative polynon:ial
Kalman filter, we have to consider a method of initialization. Since the Kalman filter equa-
tions are recursive, values of both the state and associated error covariance from the previous
cycle are required. For most lincar filters, the method of initialization is not particulari
- significant because the effects tend to vanish at Jarge times. Indeed, that is the case for (his
problem. However, it is desirable to limit the excursions of the predictor while the filter is
in the unconverged condition. One basically wants to form the best state estimate, base:
on any information that is available, that minimizes the associated initial error covariance.

In the absence of any a priori target information, the only data available to initialize the
filter will be the measurements. In order to initialize the derivative clements of the state
vector, it is necessary to have available, at a minimum, enough measurcments to define the
required derivatives by differing techniques. This method approximates derivatives (known
as “pseudo-measurcments’™) by finite differences of current and prior position measurements.
For example, let us consider the case n = 2 and use the well-known backward difference
formulae (neglecting higher-order terms) where we approximate

X1 (0l0) = 7(0) (3.152)
x2(010) = [2(0)~ #(- 1)} /At (3.15h)
X30010) = [2(0) - 2z(- 1)+ z(- )] /A2 (3.15¢)
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We can now evaluate P(0/0) which we will write in the normalized form
P(kik) = o (k) p(k} o (k) (3.16)

where g, (kik)is the diaganol matrix of standard deviations of the state vector error gi(klk)
and p(k) is the matrix of normalized correlation cocfficients. Assutning the meas'irement
error variance is not rapidly changing and neglecting finite-difference approximation error.
we find

1 0 0
0 0i10) = o0y |0 /A 0 (3.17a)
0 G Voiae]
( ! VT IM/6
POy = 3 (2.17b)

T —————
-
-

_,_\/E 302 v

Unfortunately. for high-data-rate systems. the error variances of the derivatives, using the
finite-difference method of state estimation. can become unrcasonably large. For cxample.
from Equation (3.17a). we find that for 6(0) = 5 yards and At = {715 second. the standard
deviation of the acceleration error is approximately 292 G's! This situation is clearly un-
desirable since we could guess 2ero for acceleration and never realize an crror lareer than a
few G's. A similar argument can be made cencerning the velocity initialization but the
numbers are not as dramatic. Therefore. we will choose a single-pass (using one picce of
data) initizlization for the sccond order filter by taking

((010) = Q) (3.18a,
%0010y = 0 (3.18b)
X;(0i0) = 0 (3.18¢)

The values for the derivative state error standand deviations would then reflect our estimates
of the possible errors that Equation {3.18) would produce. This is effected as

s
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[02(0) 0 0 |
POIO} = | O 03(0) G 3.19)
0 0 o§:0)_
where
o3t0) = E [dxi0ydt]® i3.20a)
01(0) = E [d*x(0)di?}2 {3.205)

are o priorj estimates and would depend upon the type of target. For example. it has been
found that 6:€0) = 300 yards/second (approximately Mach [)and 03003 = 10 yards second-
tappronimatels one G quite adequately span the spectram of possible air targets in the cur-

rent tareet seemarie. Singer (1970) has suggested a method of ostimating a3(0) as

A ]

'-\l:ﬁ.l\
— i

0310y = I +4 - Probability iix3] = Agg ) - Probability (x: =0 €3.21)

Al

where Ag,, i the maximum aceeleration capability of the target which. presumably . one
wight estimate for a particular class of targets. The values of 62(0) and ¢3(0) for surface
targets would undoubtedly be much smaller. For example. we might choose 02101 =

14 yards/second (about 23 knots) and 6:(0) = 2 vard sccomd® tabout 6.2 G). Upon com-
paring error-convansnce sesults ol the one-pass initializstion with those of the finite dif-
ference initizlization, it was found that. after approximately 10 seconds. there was no
appreciable differcnce. On the other hand. the onc-pass initialization viclds considerable
lower error during this initial period. For the case of n = 3. when a value for 04(0) is re-
quired. we must cstimate the maximum rate of change of aceeleration. For a high-
performance air target. such as & madem fighter aireraft. the author learned (from dis-
cussions with pilotst that the maximum sfeadvsare tuming rate over the entire speed)
muncuverability spectrum b approxunately 20 degrees/second twy, = 0.3-09 rudians/second.,.
A value of

:10) = wy, o3t (3.2
was therefore chosen for initialization of the third order Giters.
In conclusion. the one-pass initiafization is very simple to implement as it requires no

additional measurements or fogic. It was found. both from error, vovariance resuits and
Monte Curlo simulation. to vicld improved estimates during the initial transient phase. {tis
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used in all remaining work in this report and was subsequently implemented in the digital
MARK 68 GFCS.

C. CONVERGENCE PROPERTIES

Early in the ccudrse of this investigation, it was discovered that fundamental information
on factors that directly affect filter convergence and s:ttling time—and therefore filter
performance --was not available, Qualitative relationsaips were usually known. or at least
suspected. between convergence rates and such variatles as polynomial order, data rate,
initialization methods. etc. It was felt. however, that quantitative measures of such effects
were necessary if intelifeent decisions and tradcoffs were to be made concerning the basic
operating conditions of the filter. As mentioned previously. these studies were conducted
under optimum operating conditions and. as such. are intended to reflect relative perform-
ance of one fileer/parameter set with respect to another. -

The two significant parameters that describe a polynomial filter are the polynomial
order n and the data (or cyele) rate

dk/dt = k = 1'At

In order to establish the relationships between filter performance and these parameters. the
filter matrices of the preceding paragraphs were inserted into the general Kalman filter
subprogram in Appendin A which was exercised for various values of these parameters.
Specitically, the values n = 1. 2, and 3. corresponding to constant-velocity (first-order).
constant-acceeleration (second-order) and constant-jerque (third-order)., were selected  Data
rates of k = 2.4, 8. 16. and 32 Hertz were considered to span the range of reasonabole pos-
stbilities. Assuming a ty pical constant measurement error standard deviation and zero-
process noise Q. the error covariance and gains can be caleulated independently and no target
mueasurements need be simulated. Al conditions were assumed to be optimal so that filter
error covatiance would truly represent filter convergence. In keeping with the idea. pre-
viously expressed. that predicted position is the important quantity. the quantity actually
tned by i fire control system., the standard deviation of predicted position error o (t +
tprt) was chosen as the sltimate measure of relative covergence. Predicted position. of
counse. can not settle until all elements of the state vector have settled so that o (t +

1O is an effective “norm™ of the current error covariance. In fact. it can be shown that
any cost function of the form

J = Ele' Ael

can be uniquely minimized with respect to K ondy if A s positive semi-definite (see Geib.
1975 for exampic). Of course. the trace of P is only a special case when A =10 One could
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also choose the positive definite matrix A = ¢T(t,) ¢(t,) as we have 2ad minimize the pre-
diction error. For the case of n = 2, we are interested in

o (t+tpit) = [Py(tit)+2t, P,z(tlt)ﬂg Py (tit) + tg Pys(tlt)
(3.23)
+ tg P, '+ tg P33 (tit)/4} 12

A prediction time of t, = 10 seconds is used as a standard of comparison for all the one-
dimensional results in this study. This corresponds to a nominal projectile time-of-flight for
a Navy five-inch gun system engaging air targets. Notice also in Equation (3.23) the factors
that multiply the rate errors. It can clearly be secn that velocity and acceleration estiniation
errors are the principal cause of prediction noise.

Before discussing the convergence results, it might be helpful to consider a transforma-
tion of the polynomial filter, suggested by Morrison (1969). that is useful in understanding
and interpreting these results. A transformation of the state vector can be used to absorb
the At dependence in the error covariance equations. This is done by defining an alternate
state vector

X* (1) = [x (At)dx/dt (At2/2)d2x/de? ..
(3.23)
. (At [ahydnx/dn | T

The cquivalent transition matrix is
¢; = G- DYIG- DEG- i) (3.24)

which. we find. is a matrix of constants indcucndent of At. For the example, n = 2, we find

N 1 1']

i

" =10 I 2

ood

It the At dependence is removed from the initial error covariance. the error covariance 1.4
gains are then a function only of the data point k and the order n. In subsequent sections.,
we will show that the frequency content of target motion is rather low so that a high sam-
pling rate is not actually necessary to satisfy the Shannon sampling theorem. In fact. the
principal advantage of a high data rate is to reduce the effective measurement error level. In
the scetion on prefiltering, it will be shown that data compression techniques can be used
to achieve effective high data rates without actually cycling the Kalman fifter at such rates.




In order to consider the real convergence criterion, the extrapolated position error
standard deviation, it is more straightforward to use the original unscalzd equations (without
Morrison’s transformation). In Figure 3.1, we have plotted the time history of the standard
deviation of the predicted position error (t, = 10 seconds), n.ormalizcd by ¢ (the measure-
ment error level), for each filter order and data rate pair (n. K) under consideration. Such a
graph can be used to determine optimal settling time for any particular situation. For
example. suppose we decide the filter is “settled” enough to fire the gun when the predicted
target position is accurate to within 25 yards. If we can track the target with a 0 = 5 yards,
then using the (2, 16) filter. we could start firing 8 seconds after the initiation of target
track. Basically, we see from this graph that the lower the order and the higher the data
rate. the faster convergence will occur. We see that the third-order filter converges painfully
slowly at these data rates and is probably not suitable for gunfire control purposes due to
this factor and the heavy real-time computational burden of this filter at high data rates
The constant-velocity filter, on the other hand, converges very rapidly. predicting better

than the tracking measurement error in less than 10 seconds. with a data rate of only 4 Hertz,

Of course. settling time of diese optimal tilters is not the only consideration in making
a choice. We know that targets do accelerate and that the constant-velocity filter, without
an estimate of acceleration, will do quite poorly in predicting future target posivion. The
crror in that situation is of a bias type rather than the uncorrelated error considered here.
In Figure 3.2, we have plotted for reference purposes the complete error convergence Listory
of all the state elements (position. velocity. acceweration, and 10-second predicted position)
for the constant acceleration (n = 2) filter. With the dashed lines, we have also plotted the
corresponding actual error that would occur if we attempted to filter the “real-world™
constant acceleration mode] by assuming a constant velocity (n = 1) filter model. Large
bias errors in all state clements are observed to occur in the actaal error elements when using
an n =1 {ilterin an n = 2 environment. The prediction error. which initially starts to get
smaller. quickly reverses itself and satisfactory prediction error is never achicved. Then =1}
tilter is really not a candidate if we are going to attempt to deal with manuevering targets.
That leaves the n = 2 filter which we would chnose to implement if a polynomial target
model were selected. We would also choose the k = 16 Hertz (or faster) since it converges
fastest. Convergence time is not only important initially. but. as we shall sce in a late, sec-
tion on adaptation. it may be necessary for the fiiter to reconverge when the adaptive
features in the filter decide it necessary. Filter responsiveness in such a situation dictates
greater significance to the problem of realizing a short settiing time.

In conclusion. then, we would choose the second-order filter over the third-order
(ruled out due to settling time) and over the first-order (becuse we must track an aceelerats
ing target in an effective manner). We also conclude that. given uncorrelated measurement
noise (satisfying the requirement for the derivation of this filter). we want to process data
at the highest rate possible. The finai determination of this rate will be based or avasiable
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Figurc 3.2. Optimal Convergence of
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Error Using n = | Filter

computation time in the real-time filter implemertation and on the anility to detennine and
remove the actual corvelated portio.: of the measurement poise. This fatt aspct of the
problem will be discussed in a later section. We will proceed on the basis of k = 16 Hertz
unless vtherwise noted. For reference purposes. a summary of the filter equations for

n = 2 can b found in Table 3.1.

Another possibility. which the author would like o exriore in the future, is that of
polynomial fiitec ca.cading. In this approach. one could c.;nceivably obtain the f23¢ con-
vergence propertics of the low-order filter and the mcdeliag improvement of the high-order
filters. The procedurse might be implemented in the following mannor. A constant velocity
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firer (n = 1), with: limited memory to prevent divergenive {1+ be dizcussed juter), would first
be raplemaensct. The output state v ctor of this filter woulg then provids the measure-
ments gud measuremient error o Liance for @ constant-acceleration {5 = 21 filkey {also wgih
specifier memory). o might even Le g eubie 10 use znotier cascads and fecd 2 jerque
fn =31 filter, A logie section wourrld 1hen operate on h reviduais of each filter and pick the

one that is eperating the best. The possibifities are ceriainty intrigcing zo2 should be ex-
slored i powaibk,

Tabie 3 1 Second Oroer Filter Equations: A Summorny
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Table 3.1, Second-Order Filter baustions: A Summuaey -(Continued)

GAINS

Kik) = Pyy(kik- D/[Py (kik - 1) + 02(k))
Ka(k) = Pyatkik~ D/IP(klk=- 1) + 02(k)]
Ka(k) = Pratklik - D/ iPrgtkik- 1) + 62(K)}
RESIDUAL

vtkik- 1) © an, - pikik- 1)

VPDATE

Gekiki = veRik- By + Kpikdetkik- D)

i

Spikind = futkik- 1)+ Katkdetkik- 1)

]

VprkAr = Giklk- D o+ Ry etkik- 0
Piptk:kr = 1= Ky} Pypo(kik- 1)
Piatkik) = {1 - Kok Ppatkik -~ )
Pyatkiky = {1~ Kyk)f Pysekik- 1)
Paathiky = Paagkik- 13-~ Kyik) Pyatkik - 1)

Prstkih) = Pastkik~ 1y - Katk) Pystkek- D)

Pisikik) = Putkik - 1) - Kz(k) Pyskik - 1)

INITIALIZATION

X (01 20y

X2 (Gioy 5{0iy = 0

{10}

(n

(13)

(14)
(15)
(16)
(7)
{18)
(19)
(20)
@

(2

(23)

(24)
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Table 3.1. Second-Order Filter Equations: A Summary ~(Continued)

INITIALIZATION-(Continued)

) P11 (010) = o2(D) (25)
P;2(010) = 0. (26)
P,3.010) = 0. (27
P»2(010) = 33(0) (28)
P»3(0i0) = 0. 29
P;3(010) = ¢3(0) (30)
PREDICTION
Xpartin = uin + el + a2 (30

RECOMMENDED VALUES OF PARAMETERS

Ve W

k = 16 Hertz 3
FOR AIR TARGETS

0>t0) = 300 yards/second (33)
o3(0) = 10 yards/second? (34)

FOK SURFACE (¢. iP) TARGETS
g3(0) = 14 yards/second (25

03(0) = 2 yard/sccond? 36)
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IV. THE: RANDOM-ACCELERATION TARGET MODEL

The derivative polvnomial target model of Section 1. while possessing several advan-
tages. undoubtedly suffers as far as being a realistic representation of the scenario of actual
targets over a period of more than a few seconds. Actual targets would rarely traverse a
simple predictable path while in the range of engagement by our GFCS. Instead. such
targets wottld be manuevering. These maneuvers could take the form of a deterministic path
if the target has a particular goal in mind. such as effecting a collision with the ship (in the
case of an anti-ship missile) or the release of ordnance (in the case of a bomber). The
seenario wouid also have to include aondeterministic (or random)} maneuvers in such situa-
tions when the target is mancuvering merely to evade interception by the ship's weapons or
when irregular winds and atmospheric turbulence would act on the target. Anti-ship missiles
would be subject to the latter «ffects and also may respond to the wander of its own radar
around the target ship. In any case, the probability of a target following a constant accelera-
tion ¢or any piulynomial) course for any length of time is. unfortunately. not what we might
prefer. With this idea in mind. perhaps the problem can be approached from a different
point of view. Rather than attempt to mode) the target with a detenninistic trajectory such
as i polynomial. let us consider i case where we acknowledge the fact that the target is very
likely to be mancuvering in some unknown manner and where we assume that cach dimen-
sion of such trajectories appear (to the FCS) to be a random variable. The following model
was deveioped by Singer (1970) and has already been selected for implementation in several
other fire control and tracking systems.

The target acceleration is assumed to be an autocorrelated (or serially correlated)
random variable with known statistics. Specifically. Singer chose to model the acceleration
as 4 nst-order Markov process with the differential equation

2x(1) Ix
< {d-——‘,”) =+ (d-——-"“') + wit) “4.h
de g Tmo \ de2

driven by a white noise input of variance

2y

o2 (T = = &T) 4.2
m

The acceleration sequence geaerated is a form of process known as a random walk. An
example of such a process gencrated on the computer with a correlated random number
generator CORNUM (See Appendix A) is shown in Figure 4.1. nNotice that the correspond-
ing position {double integral of X) is also plotted. The wtocorrelation function for the
avevieratior is the exponential
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Figure 4.1. Example: Random Acceleration Model
(Ty = 20 scconds. 6, = 2 yards/second? )

QT = E[xtux(t+ Tl
1.3

ol exp (- 1Tita)

We therefore require only two parameters (0, and 7, OF Wy, ) to characterize the target
mancuverability. The parameter 0, can be (loosely) thought of as the roct-mean-square
level of target acceleraiion and 7, as the characteristic mancuver time (approximately 0.8
times the mean time between acceleration zeros) or the inverse of maneuver frequency w, .
Notice that since gy, is essentially the rms level of aceeleration for one dimension. the
actual peak total (three-dimensional) acceleration might be several (perhaps three to four)
times larger than o, . It is felt that this model is much better suited to our purposes than
the polynomial models because it directly relates the filter parameters to the Kinematics of
the target scenario. We have also fourd that this model performs better in voth filtering
and prediction than cither the n = | or n = 2 polynomial models. It should be emphasized
that we do not mean to imply that one cannot find particular trajectorics that might poorly
match this model. We do expect actual trajectory to be “contained™ statistically in the
random acceleration model and thus be a “reasonable™ sampke from our assumea popuiation.
The author feels that the random acceleration model, while far from perfect. is the best
modvi yet developed for general tracking filter application. The model can be written in
state space notetion by defining the state vector
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x(t) = [x(0) dx(/dt d2xepfde}’

dx()/dt = F(1) x(1) + wit)

and
where
!’0
Fb=F =710
L0
and

1 0
0 1
0 -

wit) = [0 0 wi)}?
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44)

4.5)

(4.6)
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By simple integration of Equation (4.6). we find that the transition matrix can be written

an
1
otk k-1r=9¢=10
| 0
where
Hay =
BAt = 1,
oAy = 1,

At odn)

I MAD

0 7aD

L‘xm' ﬁlffa )

[1- yAn]

[Y(AD + At/r,, - 1]

4.3)

{4.92)

{4.9b)

4.9¢)

The argument of a. ¢ .nd v - At ~ will hereafter be suppressed unless specified for a par-
ticular purpose. The resemblance of this model to the second-order polynomial model can
be scen immediately if we consider the limiting case of T, >> At. 70> transition matrix

becomes:

FOTRUIRID SN WSO IR SRS

Lo




1 At a2
¢ =4é= {0 ] At

0 0 |

i.e. identical to the sccond-order polynomial model. On the other hand. if 7, vanishes (or
Tm << At). we find

1 A: 0
0=¢,=10 | 0 (4.i§)
Lo 0 0]

This transition matrix corresponds to the first-order polynomial model. We would therefore
expect. finite values of 7, (between zero and infinity) to yield a model that exhibits con-
vergence properties between those of the first- and sccond-order polynomial filters. Indeed,
this turns out to be the case. In Figure 4.2, the extrapolated position error standard devia-
tion is again plotted for various values of 7, . The cases 7, = 0 and 5, —* %0 corresponds
exactly to the first- 2nd sccond-order polynomial cases. All cases were run with a data rate
of 16 Hertz. a value of g, = 0 (limiting case of 6, small) and with onc-pass initialization. H
We find that. just as expected. as 7, gets larger. the convergence propertics move toward
the second-order polynomial case. g

The process noise matrix. Q. is developed in the appendix of Singer's paper. This
development is rather lengthy and will not be reproduced here. The final results can be r
writlen

Qi = 7 ok 11+ lAUr,) - 2AUT, P

. 4.122)
+ MNAUTL /3 - HAUTLYY - ¥
Qi =13 02 [!—73‘:7*'3{3("1‘ Yy
{ wm 7m Tm (4.12b)
- AUty ) + (AU, )
Qi3 = 74 0l (1- 9% - AAtrg )yl @.12¢) !
Qa2 = 13 02 14y~ 3- 92 + AAliry)] (.12d)
Q3 = Tm 0;“*72* 2y) 4.12)
Qi = og(1-91) (4.121)
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(Notice that Q is the only place where oy appears in the filter.) Again for the limiting case
of Ty ¥ At. this matrix can be approximated as

At4/20 ad/8 atfo
Q = 2Atogir, |AU/8 A6 A2 “.13)
atz/e a2 i

Since we will always operate with parameters At and £y in this latter range. we will usc

this approximate form of Q for our work. Simulations show, that for values of the parameters
At and 7y in the ranges considered in this report. there is no difierence between the use

of Equation (4.13) instead of Equation (4.12). W¢ must use the exact expression for Q in

the iong-time extrapolated covariance however. Notice in Equation (4.13) that a decrease

in ry of an increase in frequency influences Q in the same way as an increase in oi . The
extrapolated position variance equation for this case is

P““*t?;;ﬂ = Py(tit) + 2'9 Pi2(tjin) + Jap Pi3(t/t)
+ ti, Paa(t/t) + 2ap t, Paa(tit) + 0;: P33 (t/t) (4.14)

+ ol!p
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where
o« = rg‘ lexp (- tp/ry) *+ tp/ra - 1] (4.15)
and

Quip = 74 of 11+ 20t /7y) = 20airy ¥

+ 2t /ey /3 - M fry)exp (- ity (4.16)
- expi- 2tpity)]

The choice of a good value of ry is a function primarily of the target scenario for the
GFUS. The autocorrelation was studied for several typical profiles of older anti-ship mis-
siles. and a value of approximately ry = 26 scconds appeared to consistently be yielded.
Singer (1970) recommends ry = 20 seconds also for manned mancuvering targets excereis-
ing evasive mancuvers. The same value has also been feund independently by other people
who have studicd the problem. No information cn maneuvering surface targets has yet been
analyzed. Other values can. of course. be chosen for surfuace targets or to reduce settling time
as may be required. It should by emphasized that this rather low abserred mancuver fre-
quency. corresponding to 7y = 20 seconds, does not nccessarily imply that this is the high-
ost frequency that a particular target might be capable of sustaining. On the contrary. most
air targets can mancuver much more rapidly if desined.  Rather. a low mancuver ircauency
is probably typical of air targets mancuvering to achieve a particular goal  such as inter-
cepting ownship or exercising their own fire control in order to release onrtnanc: at own-
ship. We consider values of 1y anywhere in the range of 3 to 20 scconds as realistic. 1

£h

The selection of a value of oy is more difficult than that for ry . The acceleration
autocorrelation study of the target scenario demonstrates a very wide range of values for
oy . For examplke. some targets might achieve an rms mancuver level close to one G while
others are essentially nonmaneuvering (actually maneuvering at a very low level duc to
atmospheric effects). The effect. however. of oy on optimal filter performance is quite
dramatic. For example. in Figure 4.3, the steady-state value of the normalized 10-second
prediction errof is plotted as a function of oy for Ty = 20 scconds. For a value of gy =
10 yards/sccond? (at the upper limit close to one G}. the normatized prediction error is
15.96. clearly 2 very poor value for GFCS applications with conventional projectiles. The
reason such a large prediction error occurs is due to the value of the current error covariance
which remains large due to the process noise,

Figure 4.3 also plots the carrent acceleration estimation crror level which we seeis A
quite sensitive to oy . Since the prediction crror equation (4. 14) magnifies the acceleration

crror. we find the larpe prediction errors occurring for large oy . Obviously. the parameter
oy has a significant effect on the filter bandwidth and. since it has such a wide range of
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values. must be carefully chosen to achieve proper filter operation. The next section on
adapiion will deal in more detail with the specification of gy and ry . For reference pur-
poses. the comergence of thie normalized prediction crror is plotted in Figure 4.4 fora

range of values of oy amd vy . Notice that the steady state values for smaller 7y (higher w,, )
are not necessaridy Barger Tor prediction since smziier 1y suppresses prediction noise at the
satne time it increases filter noise.

It is also interesting to defermiine the sensitivity to incorrect assumed values for the
random acceleration parameters. To do this. we first determine a set of parameters gy ¢ and
T for the filter tsubseript 11 1o assume. We then allow one of the parameters to vary and
calcubate the acnsal and optimal covarance with the equations of Scction 1. We define a

figure of merit

i [543 2)
i, 0 = = ) Fopelly TG Vo o (4 +1,75) 4.17)
P

i the integrated taverage ) ratio of ithe optimal to the actual predicted position crror standard
deviation. Since gy ¢ ¢ is always greater than or cqual to gy, .. § is always kess than unity
and el to one onhy for the optine case. We might therefore think of § as the degrec to
which the suboptimal filter matches the optimal perfor. nee. Using prediction time t, =

10 secomds and total sun time T = 30 seconds as usuai. the sensitivity results are plotied in
Figure 4.5 tor three ditferent filter bandwidths  wide (w). medium (M) and narrow (N). In
Figure 4.5¢ah we fimd it takes an error of approximately an order of magnitude in assemed
target mancuver kevel to produee a 50 percent optimality level Le. when the actual error is
twice what it could be. It is aiso slightiy prefemble i we must be in emror -to underestimate
than to overestimate the mancuver fevel oy . In Figure 4.5(h). we find that prediction crror
levels are practically ingensitive to the choice of the mancuver time constant 7y . The reason
for this behavior is probably related to the filter-pradictor offsetting effects mentioned in

the last paragraph. Notice in both figures. also. that there is very little Gf any) discernible
difference in seasttivity ov. r the significant cange of filter bandwidths.

The author bas therefore chiosen thye random-aceeleration tareet model over the poly-
snomial mode! primarily because the random-acceleration model directly relates the target’s
kinematics to the filter transition and provess noise matrices and therefore to the filter
bandwidth. Al the extrepolation equations will change from those presented for the poly-
nomial case. The update equations do not change. Specifying the one-pass initialization
completes the description of the new filter. For reference purposes. a ssiimary of tiwse
filter cquations appears in Tabke 4.1,

Belore continuing to the next section, it should be mentioned that other nondeter-
ministic target models are under consideration for the GFCS tracking application. Brown

and Price (1974). for exampie. tried a higher-order analogy of the model in this section,
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i ¢ . acceleration rate is a exponentially correlated random variable, but found that it did not
work as well as the model discussed here. Moose (1972) discusses a very interesting model. i
known as a semi-Markov process. which he applied to the case of a maneuvering submarine.
The author would like to investigate the applicability of this model to the air-target track-
ing problem.

Table 4.1 Random Acceleration Filter Equation.. A Summary

EXTRAPOLATION

kyik/k=15 = %(k=1/k=1) + Atkp(k-1/k=1) = akq(k~1/k=1) (1)

%o (kfk =1V = (k= 1/k=1) + Bky(k = 1/k—1) (2)

f3(kfk=1) = yiz(k = Ik = 1) (3) *
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Table 4.1. Random Acceleiation Filter Equations: A Summary—(Continued)

P (k/k—1) = Pyj(k—1/k—1) + 2AtP,(k—1/k— 1) + 2aP 3(k~1/k = 1)

+ APy, (k= 1/k— 1) + 2aAtPyy(k— l/k— 1)

+ a?Pyyk = 1/k=1) + Q, (k=1 (4)
P ytk/k = 1) = Pk = 1/k= 1) + P (k= 1/k=1) + AtP,y(k—1/k=1)

+ (a +BAUP, (k — 1/k = 1) + 28P5(k— I/k= 1) + Q)5k = 1) (5)
Pyy(k/k = 1) = yP;3(k = 1/k = 1) + YAtPy(k — Ik = 1) + ayPyy(k — 1/k = 1)

+ Qy3k-1) (6)
Pyy(k/k = 1) = Pos(k — 1/k = 1) + 20Py3(k = 1/k = 1) + B2Py3(k ~ 1/k = 1)

+ Qy(k— 1) (N
Pyy(k/k = 1) = yPyy(k = 1k = 1) + ByPyk— I/k— 1) + Qyatk = 1) 8) 1
Pyy(kik — 1) = y2Pya(k = i/k = 1) + Qqa(k = 1) 9) L
GAINS
K k) = Py (k/k = 1V/[Py(kfk = 1) + 63kl (10 %}
K, (k) = P,y (k/k = I[Py, (k/k ~ 1) + 0%(K)] (1 ‘]
Ki(k) = P, 3(k/k = /[P (k/k ~ 1) + a?(k)] (2
RESIDUAL
vikfk~ 1) = 2(k) — ,(k/k = D) (13)

33

Py
by




Table 4.1. Random Acceleration Filter Equations: A Summary —(Continued)

UPDATE
%y (k/k) = %;(k/k = 1) + K (kw(k/k~ 1)

%, (k/K) = %y (k/k—1) + Ky(kw(k/k = 1)
g3(k/k) = X3(k/k— 1) + K3(kw(k/k - 1)

P, (k/k) = [1 =K, (K)P;, (k/k~ 1)

P, (k/K) = [1 =K, (K)IP;p(k/k— 1)

Py3(k/k) = [1 =K, (K)]P3(k/k=1)

Pay(k/K) = Pya(k/k = 1) = Ky(K)Pyp(k/k = 1)
Py3(k/k) = Pyy(k/k = 1) = Ky(K)Py5(k/k = 1)
P33 (k/K) = Pyy(k/k— 1) = K3(K)IPy3(k/k = 1)
INITIALIZATION

1 (0/0) = 2(0)

% (0/0) = %3(0/0) = 0

P,,(0/0) = 6%(0)

P,,(0/0) = 0.

P,;(0/0) = 0.

022(’0[0) = 0%(0)
PZJ(OIQ) = Q.

P33(0/0) = 0%(0)

(14)

(15)

(16)

)

(18)

(19)

(20)

2n

(22)

(23)

(24)

25

(26)

N

(28)

(29}
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Table 4.1. Random Acceleration Filter Equations: A Summary ~(Continued)

CONSTANTS
v = exp (~At/ry)
B=r1y(l-9v)

a = 1 (v+ Atfry = 1)

PROCESS NOISE (CONSTANT)
03 3 = ZA""%‘ /TM
013 = A‘Q} 3i2

Q2 = 241Q,,/3

PREDICTION
KU+ /0 = % /D) + 01, + K30/075 [exp (<t ity

+ /gy ~ 1]

RECOMMENDED VALUES OF PARAMETERS

k = 16 Hertz

oy = 0.1-10.0 yards/sccond?

Ty = 3-20scconds

(34

35y

(3

(38)

(30

(40)

4

(42)

(43)
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Table 4.1. Random Acceleration Filter Equations: A Summary—(Continued)

—

FOR AIR TARGETS
0,(0) = 300 yards/second (44)

03(0) = 10 yards/second? (45)

FOR SUPFACE TARGETS

14 yards/sccond {46)

0,(0)

2 yard,'second? (47

03(0)

V. ADAPTATION

The Kalman filter formulation. presented in the previous sections, assumes complete
knowledge of the lincar dynamic model and the process noise covariance. In a general
tracking filter application. such as the gunfire control problem, the particular strategy being
exercised by the target is unknown. The form of the state vector and its propagation
characteristics is ascumed and may or may not adequately represent the true target motion
over long periods of time. (We always expect. however, the dynamics model to be a good
approximation of target motion over short periods of time.) Such a situation is usually
referred to a “suboptimal modeling™ in the sense that no attempt is made to fully model the
target dynamics. The utitization of a suboptimal model often leads to large estimation
crrors—i condition known as filter divergence. When divergence occurs, an inconsistency
between the error covariance calculated by the filter and the actual error covariance occurs.
Examples of such aivergence problems will be shown shortly.

An adaptive lilter is basically a method of adjusting purameters in order to effect a
more realistic match between the calculated and actual filter ¢rror covariances. The purpose
of such a techmque is to reduce and bound the actual error covariance when modeling errors
become farge enough o seriously affect the performance. We wili find that, contrary to the
linear Kaliman filter techniques described thus far, the calculated error covariance must be-
come a function of the actual data through a coupling of the filter parameters with the
target motion. We will also find that the performance of a particular adaptive filter is a
function of the procedure used to detect divergence and of the method used to modify the
filter when divergence is detected. After the following examples. techniques of detecting
divergence and two forms of adaptive filters will be presented.




A. DIVERGENCE AND THE BANDWIDTH TRADEOFF

We will now consider a few particular examples of target motion—actually driver by
target acceleration—that can lead either to a filter divergence problem or perhaps to an un-
acceptably wide-banded filter implementation. Using these examples. we will then demon-
strate and discuss several possible techniques of filter adaptation to deal with the situation.

Let us first consider the random-acceleration filter model developed in Section IV. In
that section we discussed the values of the parameters representing target maneuverability
and mancuver frequency and found, as might be expected. that no single set of numbers
would adequately represent the target scenario. Rather. it was found that a range of cach
parameter could be expected and that we can essentiatlv bound the parameters by a low
mancuver level. low-frequency (long time constant) parameter set which we will designate
(OyA - WA Y (Where wy is 1/7y) and a high-mancuver-level. high-frequency set (oy g . Wi b
Qur fundamental assumption in approaching adaptation with the random-acceieration model
is therefore

Oy . WaMa) S (Oy.yg) < 10yg. wyy) (5.H

where (0y . wy 1 is the parameter set representing any actual target. Recall that a non-
7e10 choice of (O, . wyy ) is due to the fact that an actual target moving through an actual
atmosphere will be buffeted by turbulence (and perhaps other effects) so that (oyy . wya )
really might represent inadvertent mancuvers of the target. It is important that we do not
allow the A parameters to vanish since steady-state ¢error covariance would also vanish and
the filter could diverge due even to the mikdest mancuvers.

Let us now construct filters based upon cach bounding parameter set and called the
corresponding (fixed-parameter) Kalman filters A and B. We will now exercise these filters
against several target profiles to assess their acceleration tracking performance. In Figure 5.1,
the actual 2. celeration of several targets is shown by the solid lines. The asterisks plot the
deceleration estimates of the A filter and the circles those of the B filter. The mancuver
parameter sets used for these filters are (Oyy . wya Yor €0.5. 1720) and toy gy . wyp) of
(53.0. 1'10). These acceleration profiles and their two integrals were generated on the com-
puter. and numerically generated white noise v..th 0 = § yards was added to the true posi-
tions to simulate the measurements. It is observed that the A filter is narrow-bunded in that
the acceleration estimates are relatively smooth. Unfortunately. the A filter values tend to
diverge (or at feast lag severely) from the true value whenever the aceeleration changes
rapidly. The B filter estimates tend to usually be unbiased (since filter B is very wide-banded)
and never really divergent. Unfortunately. the B filter estimates always contain a large
amount of noise. even when we sce that acceleration can be tracked smoothly and accurately
by the A filter. Figure 5.1 displays dramatically the classical problem of determining the
proper filter bandwidth to yield the smoothest unbiased estimates. The paradox is that.
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while cach filter has its advantages and disadvantages. neither is really suitable (as they are)
for implementation as a GFCS tracking filter. 1t is therefore clear that we should look for

some method of adapting on-line the bandwidth of the filter to effect the desired performance.

Before leaving Figure 5.1, the reader might note that these particular acceleration
profiles obviously belie our target model assumption that acceleration is a stationary, first-
order random process. Indeed. many real targets will not follow this model any more than
they might follow a polynomiat model. The point again is that we want each trajectory to
be reasonably represented by the statistics of the random process.

B. RESIDUAL STATISTICS AND MANEUYER DETECTION

When divergence occurs, the errer vector (estimated state minus true state) grows large.
Fortunately. we are able to monitor at least partislly the actual performance of the filier
at any given time. This is done by observing the sequence of residuals (often referred to as
the “innovations sequence ) and attempting to detect the buildup of a bias and conscqueni
growth of the residuals, We can determine the statistics of the residaals by recalling the
efinition

ukik- b = k) - Hiky Akik- 1)

and the meastiement model

zihy = Hiky k) + vk

Substititing for 2(k). we find

kK- 1Y = vy - HIK) etk/k - 1) (3.2)
By taking expocted values, we find immediately that
Efpkik- ) =0 (3.3)
and
E{e/k- Delk/h- D = Rk
5.4)
+ Hik)Y Pik/k - D HTK)

Substituting the matrices for our model. we find that. when the filter is operating optimally,
the residual sequence should be zero-mean Gaussian with variance
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02(k) = o2(k) + Py(k/k- 1) (5.5)

1t is then a relatively simple matter to determine the probability: that the sampled residual
belongs to the population with the above statistics.

An important extension of Equation (5.2) can be made in the case of the actual
sampled residual. The actual residual is comprised of exactly the same error terms, and the
sample expected value (denoted E,) is related in the same sanner to the ucri! error nd
measurcment covariance. le..

E, fetk/k - D elk/k- D] = Ryeetk) + Haer(k) Pacrik/k ~ !)HX(-TU:) (5.6)

Or for our casc

1}

E, [P2kik- 1)} = ol cylk)
(5.7

=l e k) + Pyacptiik - 1)

If we are sufficiently confident in our estimate of the measurement ¢cror variance {0 assume
that our filter estimate 02 1k) equals o;’“-r (&), tirers we find that by using Equations (5.5)
and (5.7) we might make certain important inferences about the validity of our calculated
error covariance and. if necessary. adjust it accordingly. If our estimate of of’u—-f (k) isvery
inaccurate. then adaptive techniques based upon the use of such information would be in-
advisable. Another technique to avoid this problerm will be discassed later but was not
implemented.

Rather than work with an indwvidual residual, greater statistical significance can be
obained by considering scverai data samples. We will use a sample mean whick. defined for
any varable £ is

=k

fik) = fik) (5.5)

1
M 12k~ M

It is much more convenient o implement the sample mean recursively by means of a fixed
memory lengthi averager that will approximate the exact sample mean to Aty This re-
cumnive sample mean is given as

Ttk) = Gy ftk- 1) + Gy fik) (5.9

where tht constant guns are
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G, =M-1)M=1-G> (5.102)
Gy = 1M {5.10b)

The effective memory length {or “window’’) of this averager is simply Ty = MAt. Of course.
this averager is not valid when t < Ty . but that does not rezally matter here. We will choose
avalue Ty that will minimize the maneuver detection time. The influence of Ty on mancu-
ver detection time will be briefly considered shortly.

Using these equations as tools. it is now possible to construct various sample means in-
volving the residuals and cerresponding tests for each one. For example. we will normalize
cach residual with 6,(K) (1o remove the transient nature of the error covariance) and com-
pute the normalized sample mean as

i=k
Py (k) =%{- Y. wifi- Dioy(i (.10
T oask-M

where the subscript N refers to the normalization. It is casily seen that Py idcally is also a
zero-mean normally distributed random variable of variance 1/M that can provide an indica-
tion of actual filter performance relative to the calculated (assumed) performance. We
could alternatively choose the normalized mean square residuai defined as

v(ifi- 1)elti) (5.12)

We tind that M - T:_{, is the chi-squared variable with M degrees of freedom. The expected
value of B, is unity and the variance is two. It is therefore a refativeiy casy problem to con-
strct tests concerning these variables. Other mancuver detectors can be constructed by
consiering the correlation of residuals. For exampie. it can be shown that the autocovariance

Q) = Eptk/k- Delk-itk-1- 1)

should vanish for i # 0. This information forms the basis for a slightly different type of
mancuver detection. For example. the adaptive filier in the MARK 86 GFCS monitors the
signs of the residuals and declares @ mancuver when a cartain number of successive residuals
show the same sign. Sucl: methods work very well. There are other more complicated vani-
ations of this type. All of these mancuver detection statistics are similar in that cach starts
with the assumpticn that the residuals should be uncorrelated. zero-mean, Gaussian when
the filter is operating properly. In fact. the author could find no particular advantage of
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any one mancuver detector over another as far as performance is concerned. We have chosen,
for reasons of computational eificiency. the normalized residual sample mean (Equation
5.11) to construct our criterior for mancuver detection. We can now define the maneuver
detector.

We will define a maneuver as any farget motion that causes the filter performance, as
measured by Dy, . to exceed some specified value. Namely, a maneuver is declared if

(k) >Coz (k) = Ch/M (5.13aj
or ¢quivalently
73 (k) > C2/M (5.13b)

where C is 3 constant that determines the significance of the test. The probability of in-
dicating a mancuver when there is none (a “false detection™ o Type | erroi) is

Pep ={PFh (k) >C2 ol 00} (5.14)

Values of Py, as a function of C can be found in most introductory statistics books. For
example. manecuver detection at the two- and three-sigma levels (C = 2 or 3) yields Pgp =
4,307 and 0.2707 respectively. In order to choose a value of C, we must consider the
false detection probuability in conjunction with the cost— presumabiy in degraded performance-
of such false detections. Such costs are a function of 13¢ type of action takea to adapt
when a mancuver is declared. These costs will be considered. at least qualitatively. for the
various adaptive techniques to be discussed. A tradeoff is involved since there is a cost in
increased mancuver detecticn time when the maneuver threshold C is raised. 1t is possible
to estimate analytically the functional dependence betwee. . mancuver detection time and
the various parameters involved with detection for certain simp e maneuvers. For example.
let us consider the step acceleration target (of the type discussed previously) under the
assumption that the filter is completely converged and perfectly nonresponsive. i.c.. the
filter error covariance and gains are zero. A step in acceleration a, will cause a residual bias
buildup of magnitude

i 5 o
Veuds) = <a (5.13)

where t is the time since application of a,. The bias of the normalized residual sample
mean will then be




-

1

PN bias(ty) = T

ts 1 )
gt = —n 3 (5.16)
sﬁ za,t dt 60.Tu t;

Mancuver detection occurs at time Tp when

" bias(Tp) = /N (5.1
so that
Tp = (6T Co,//Ma)i3 (5.18)

Using Equation (5.5) and reczlling that Py; is assumed essentizlly zero. we can write

o, =V02"'P“ =g

Also so that

TuA/N = VM

Tp = (6C o At{/M/a, 173

(3.2

Similar procedures can be used to estimate maneuver detection time for other target models.
For example. an acceleration ramp (jerque j, ) would yicld a residual bias of

o 1. .
Voizslls) = ok tf (5.20)
and we find
Tp = (24C o Ar/Mjj, P4 {5.2)

Equations such as (5.20) and (5.22) are admittedly not exact since the steady-state filter co-
variance and gains are not zero and the filter’s response. however small, would tend to in-
crease the time required for detection. This effect is small. however. for a nasrow-bandwidth
filter. The results. on the other hand. are quite interesting. The detection time for both
cases is found to be directly proporational to (the fractional powers of) C. M and o and
inversely proportioral to the magnitude of the step change. This is intuitively satisfying
since we would expect it to take jonger to detect a small maneuver than a large onc or
longer to detect a maneuver with a higher threshold. a longer memory length or when
observed with the supcerposition of more noise. Since the probability of a false detection is
a function only of C. it is seen that the residual average does not improve our mancuver
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detector. Indeed. the residual mean serves only to increase the mancuver detection time
without effect on the false detection rate. Therefore. the sample residual mean will be
selected with M = ! i.e.. no memory length. If we had chosen another type of maneuver
detector (such as estimating a residual trend). this would not necessarily be true. Notice
also that, for the step acceleration target. an increase in the value of C. say from | 10 3, in-
creases the mancuver detection time less than 7 percent but improves the false detection
rate by almost a factorof 17,

We kave chosen Equation (5.13) as our mancuver detector. t can be shown to vield
performance equivalent to any of the other methods discussed in this section. Results with
this detector will be presented in the following sections.

C. VARIABLE BANDWIDTH ADAPTATION

Once divergence (or a “mancuver.” as we call any target motion that producces divergence
even temporarily ) has been detected. a method of modifying or adapting the filter parameters
to correct the situation must be specified. There are several methods of dealing with
divergence. most of which effectively increase the gains 1o make the filter more sensitive to
new dats and. of course. more sensitive to noise. We will consider a brief survey of these
various techniques texcluding parali=l fillering (o be discussed in the next section).

Several survey and comparisen papers on adaptation appear in the literature. Mchra
€197 2) classified the different methods into fous categories and discussed the relationships
between them and the ditTicultios ssociated with each. Hagar (1973) conducted a fairly
comprehensive investigation of the various types of adaptive algorithms aad their capabilitics
in 3 very useful reference. Swdar and Bar-Shlomo (1972) simulated and compared a number
of adaptive filters for appli -ation to their gyro compass problem. Particular cmphasis was
placed on the Juzwinski-tyy » of covariance matching (to be discussed shortly).

There are several vanants of a technique which the author refers to as bias correctors.
Demetry and Titus (1968) suggested a bias corrector, whereby if a mancuver is detected one
reprocesses the most recent dats with a wider-bandwidth filter. Friediand (1969) devised a
technique. whereby the state is augmented with a bias vecior which is then estimated in an
effectively decoupled estimator. McAulay and Denlinger (1973) suggested a multiple-order
derivative polynomiai filter whereby the tower order (n = 1) would be used unless a mancuver
is detected. 1f a mancuver is detected. then a higher-order (n = 2) filter is initialized. Es-
sentially this technique attempts to break the trajectory into piccewise polynomials with
the break-points defined om line.

Other investigators have tricd to directly zdapt the memory length or the gain matrix
itsell. Epstein (1971) used the memory Iength of the filter as the adaptive variable and
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varied the memory as a function of the residual series. Mehra (1972) presented a new
algorithm for the direct sst:mation of wre optimal gain. Hampton and Cooke (1973) also
designed an adaptive filter for tracking high-performance maneuvering targets. This tech-
nique uses the orthogonality property of the residual sequence to automatically track the
optimal gain levels,

There are some interesting algorithms that attempt to “learn” the dynamic - they
process the data. Mehra (1971, #1) devised a technique to actually estimate on line es-
sentially all of the (assumed) linear system, i.e., the order, the transition matrix. and the
measurement and process-noise wnatrices, even when the processes are nonstationary (of a
certain type). The author has not actually tried this algorithm but strongly suspects there
would not be enough time or computational capacity to use this technique. Of course, one
could i.ever be certain that, once a strategy based on past data was determined. the strategy
would continue to be employed in the future. But, of course, that factor is merely a part
of the difficulty faced by the predictor designer in any case.

Divergence can be considered as having been caused by an inaccurate estimate of the
noise covariances. It is only natural then that attempts are made to estimate these covariances
as well as the state. Mehra (1970) introduced a method to simultaneouslv estimate Q and R
when the state model was assumed. Veiss (1970) surveyed and discussed techniques of this
same type. The principal objective of these algorithms is to effect a correspondence between
the actual covariance and the calculated covariance--hence the name for these methods.
*covariance matching.” Nahi (1972) and Soeda and Yoshimura (1973) developed pro-
cedures to more or less uptimally modify the calculated error coveriance to prevent diver-
gence when the residual is not likely to have come from the calculated distribution. A
pioneer of the covariance matching technique, Jazwinski (1969), developed the concept
(usually known by his name) of preventing divergence by covering modeling errors with
noise and adaptively estimating the noise level. The Jazwinski method, at least in a con-
cept 0l level, is the approach selected for our application. It is particularly well suited for
our purpose since the random acceleration model tells us much about the proper structure
of the noise process and its relation to the target kinematics.

The Jazwinski technique uses *“‘residual feedback™ to specify the proper level of process
noise to adrd, The process works as follows. In the event of a maneuver detection, we make
use of Equation (5.6) (assuming accurate knowledge of the measurement noise covariance)
to astimate the level of actual process noise. One assumes that the actual extrapolated error
covariance consists of three terms, i.c.,

Pact(k/k-1) = ¢k k-~ 1)P(k- 1/k-1)¢T(k k- 1) + Qtk- 1) + Q" (k-1)(5.23)

where the first two terms on the righthand side represent the calculated error covariance
with a small process noise covariance Q assumed by the filter. The term Q° is effectively
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added to balance the equation. If there is no maneuver detected. Q* is zero. It should be
noted that it is not possible to uniquely specify Q* with this equation. We can only deter-
mine HQ*HT or Qj, for our case. This is not particularly troublesome as we can choose
some normalized form of the Q* matrix such as the random acceleration model process
noise matrix to automatically define the other elements of Q* as a function of Q},. For
our case, we could calculate

Qi (k- 1) = [FR(K) - 1/M] [02(k) + Py (k/k - D] (5.24)

when a maneuver » s detected, calculate the remaining elements of Q* with the Singer
form, and add Q"+ he error covariance. This technique was simulated and was found to
yield fairly good -tive filter performance. Unfortunateiy. this adaptive filter would oc-
casionally display ercatic behavior and generate unreasonable error covariances. In order to
eliminate this problem and properly constrain the error covariance, a different means of
specifying Q° was selected.

We therefore return to our original assumption that the target maneuver level--und sub-
sequent process noise~is bounded by the A and B parameter sets. Therefore, in the absence
of maneuver detection, process noise corresponding to set A will be added and. if a maneuver
is declared. Qg . correspounding to set B, will be added.

That is:
if (PH(k)< C/M]. thenQk - 1) = Q4. (5.2543)
if [P4k) > C2/M]. thenQ(k - 1) = Q. (5.25b)

iIf a maneuver is declared. some time will elapse before Qg builds up the error covariance
matrix. Another obvious alternative is to simply reset the error covariance in order to obtain
a faster response.  This technique was rejected. however, since one must pay a very large
price for a false detection. Using Equation (5.25). it is entirely possible for the maneuver
tetec or to turn off before the error covariance builds up to the steady-state value. Con-

¢, .ally. Figure 5.2 shows the sequence of events. Initially, the target is not maneuvering
and the filter, using the A parameters, is tracking acceleration very well. After the mancuver
occurs, an interval of time elapses before the maneuver is detected which we have been re-
ferring to as Tyewetion- Once the maneuver is detected and we start adding Qg . it takes
another amount of time, called T,q.p,. for the filter to “open™ or to increase the error co-
variance sufficiently to remove the bias. When the maneuver detector decides the bias is
gone and turns off, the filter returns to adding the small process noise Q5. The time re-
quired to return to steady state with the A parameters is called Treconverge-
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Figure 5.2, Conceptual Example: Single Variable-Band Adaption

In Figure 5.3. the example acceleration profiles are shown being tracked by the single.
adaptive, variable-bandwidth filter. The maneuver parameter sets are the same as those used
in the previous nonadaptive examples. The maneuver detector was operated at the C =3
(sigma) level to minimize false detections and no memory (M = 1) to minimize detection
time. It is observed that this technique tracks rather smoothly while improving the bias
error. There tends to be some overshoot when the filter adapts because it was initially
lagging and builds up excessive rates in order to catch up. The filter appears to respond well
(as expected) to the step change in acceleration. The predicted detection time of 1.65 sec.
apparently matches the simulation quite well. The variable-bandwidth or adaptive filter
represents a marked improvement in accuracy over either of the fixed-bandwidth filters
discussed previously,

D. DUAL BANDWIDTH ADAPTATION
Upon considering the single-variable-buandwidth filter just discussed., it was felt that

certain improvements could be made in the adaptive performance. l[deally. when @ mancuver
has been detected, one would likely reprocess the measurements over some interval
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immediately preceding current time with a wider-bandwidth filter so as to remove the bias
error which presumably has been occurring. Unfortunately. our application essentially de-
mands a fully recursive filter in order to efficiently implement the sume on a limited real-
time computer. 1t would be very difficult to interrupt normal processing in order to re-
process past data. The best answer obviously is some type of recursive wide-bandwidth
filter operating in parallel to the “main filter” which cun be used to (more or less) instan-
tancously remove the bias error once it has been detected. Such a technique has the obvious
advantage of eliminating the last two waiting intervals of the single variable bandwidth
filter— the adaptation and reconvergence times. If done properly. it can also eliminate the
overshoot after adaptation.

The dual-bandwidth filter would work as follows. Two filters, A ard B. corresponding
to the respective maneuver parameter bounds. would operate simultancously. The filter
would only output (te the FCS) the state vector of filter A, X5 . I divergence of filter A
is detected. using the detection criterion of Equation (5.25), the state vector of filter B,
xg . which should be unbiased. is put into filter A. i.c..

If [F54(k) > C2/M]. thenka = ip (5.20)

Conceptually. we want the adaptation to work as in Figure 5.4. The A filter is outputting
smooth ¢stimates of the state until the mancuver is detected. Using Equation (5.26). the A
filter then “jumps™ to the current (unbiased) estimate of the B filter and no adaption or
reconvergence is required. Admittedly. the output vector X4 will be discontinuous, but in
this situation Xg represents the best information available. An important consideration
was the decision as to what modification, if any. should be made to the A filter bandwidth.
Three options were considered and tested.

Theoretically. if one reseis the state estimate of A to that of B, the bandwidth should
be similarly reset. That is. if a maneuver is declared and Equation (5.26) is in effect. then

Option 1: Py, = Py
This option was found unacceptable, however. as one pays a high cost of a false detection
since the long reconvergence time has not been eliminated. Leaving the A bandwidth
unchanged. i.c..

Option 2: Py = Py
was desirable since it did not suffer the disadvantages of Option 1. The particular maneuver
detector we are using, however, did not do well with Option 2 since the large random errors

of the B filter look like biases to the A filter and repeated manecuver detections tended to
occur.  In order to eliminate this problem, the author decided on
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Figure 5.4. Corceptual Example: Dual-Bandwidth Adaptation

Option 3: Py =P, + Qp {5.27)

i.c.. a gradual widening of the A filter bandwidth which climinated the cyclic detections and
maintained a low cost of a false detection. In Figure 5.5, the same acceleration profiles
were simulated with the same parameters for the maneuver statistics and maneuver detector
but with the duzl-bandwidth filter. The acceleration estimatios. errors were reduced even
further and the overshoot errors disappeared. The root-mean-square acceleration estima-
tion error was reduced on the average by 25 percent over the singie-bandwidth filter.

Another interesting possibility. only superficially examined by the author to date. in-
volves the generation of an output vector, x,. which is always a linear combination of x5
and xg:i.c..

ﬁu = wl.i_ﬁ + ”‘w)iﬂ ‘528)
where the weighting factor W is a function of the residual statistics--both sample and

calculated -of both the A and B filter. An obvious advantage of such a technique would be
to construct a (more-or-less) optimal combination of the A and B filter with continuity of
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the output state vector simply a by-product not without merit of its own. Thorpe (1973)
developed a dual-bandwidth filter concept in which target maneuvers, assumed to be relatively
infrequent events were modeled by introducing a binary random variable in the target state
cquation. He used the likelihood ratio for the d~tection of a maneuver to determine the
weight W. Brown and Price (1974) studied the ility of a bank of parallel filters, each with
a different bandwidth, using the random acceleration model. A combined estimate was
constructed on the basis of a hypothesis test of the probability that each filter is the correct
one. Alspach (1973) also constructs a bank of parallel filters and uses Bayesian techniques

to estimate the optimal gain. Moose (1972) also uses Bayesian methods to determine the
relative weighting of the output of a bank of Kalman filters to form the best combined
estimate. The author believes these techniques deserve further consideration for implementa-
tion in a GFCS application.

in Equation (5.7). we related the sample residuat variance to the actual measurement
and estimation error variance and nentiored the problem that if our estimate of the
measurement variance is poor then mancuver detection based upon that equation would not
work well. To illustrate, let us consider the sensitivity of the adaptation process to large
errors in cur estimate of measurement error. I we greatly underestimate the measurement
error fevel. then the sample mean residual will often exceed the expected value due to
measurement error. and false mancuver detections will result. Unfortunately. such false de-
tections lead to a filter bandwidth change in just the opposite direction of the proper adapta-
tion. Instead of inzreasing the gains and thereby weighting the mewsurements heavier, we
should increase R, thereby decreasing tiv gains. Conversely., if we grossly overestimate the
measurement crror variance. then manceuver detection is delayed (perhaps indefinitely) so
that we do not increase the gains to follow the target. For the application intended for this
filter. this problem should siot occur. as good estimates of the sensor statistics should be
avajlable in order to properly model them.

Another approach which the author wishes to pursue is to statisticaliy analyze directly
the residual segquence for each filter of a parallel filter bank without regard to the calculated
and;or assumed statistics. In other words. we simply look at each residual sequence and
pick the smoothest unbiased one. This technique could also be incorporated with the weight-
ing technique of Equation (5.28). The author has experimented with such a residual-
analysis/weighting-factor approach but has not yet determined a method which works well.
Brown and Price (1974) also tried a variant of this approuach with reasonable success. The
principal advantage of such a technique. if workable. would be that it has essentially no
sensitivity to an incorrect estimate os the measurement statistics.

In summary. the author has tried or at least studied many different adaptation tech-
niques but has to date found none that works any better than the one presented. There
appear. however, to be a large number of alternatives in the literature (some of them men-
tioned in this secticic) that offer promise of improvement and which should be investigated
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further. The concept of a bank of filters of various bandwidths is particularly appealing.
Sensitivity to incorrect observation error statistics is probably the most serious problem that
must be addressed. This problem will be discussed in a future report.

VI. SERIALLY CORRELATED MEASUREMENT ERROR

In Section 11, the conventional discrete Kalman filter was described. An important and
necessary assumption for that development was that the measurement error be ““white™ or
uncorrelated. In Section 111, we found that it is desirable to process data at the nighest rate
possible when the nicasurement errors are independent. Unfortunately. the assumption of
white noise and the desirability of a high data rate are often incompatible when vsing
measurements from real physical systems. For example. truly white noise never actually
exists in an real system. When sampling data from such a system. eventually one usually
finds the noise autocorrelated (serially correlated) when observed at some sufficiently high
data rate.

In this section, we will address this problem. We will present a common noise model
and a modification to the conventionzl Kalman filter that deals with this model. We will
find that one can quantitatively assess the degradation in performance due to autocorrelation
and can perform simple sensitivity ar alyses to determine the effects of incorrect estimates of
the statistical parameters.

A. NOISE MODEL
The measurement model for the Kalman filter, as presented in Section M. is
2(k) = Hik) x(k) + (k)
where it was assumed that
Elwk)] =0
and
E ) ¥T (k)] = Rek) §;k
We will now replace the assumption of the last equation with the more general assumption
that the measurement noise v is the output of a linear discrete dynamic system driven by
white noise. le.,

wk) = W(k.k- DY(k-1)+ Ek- 1) {6.1)
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where
E(¢k)] =0 6.2)
and
E {£6) £T (k)] = R"(k) §;k 6.3)
Sage and Melsa (1971) point out, ““Although this is not the most general form of colored
noise, it is probably the most general practical form. One often has extreme difficulty in
establishing the parameters of such a simple model, so that it is hard to consider the use of
any more general form.” It is easy to determine that
Rk) = w(k.k- DRk - 1) ¥T (k. k- 1) + R*(k- ) (6.4)
and that the autocovariance of v is
Elv®yT(k- D] = ¥k k- DR(k- 1) {6.5)
These equations are uscful in defining ¥ and R*.

Now let us consider a particular type of first-order process chosen for the measure-
ment error model for this application. An exponential autocorrelation function is found to
be both convenient and reasonably matches power spectral density information that has
been estimated for candidate sensors for the MARK 68 GFCS. The noise propagation equa-
tion for this case is:

vik) = p(kyvik- 1) + o (K)E(k- 1) (6.6)
where

p(k) = oxp [- At/rk)] 6.7

is the correlation coefficient for lag t. The standard deviation of the white noise driving
term is

oy (k) = a(k) /1 - T (6.8)
and

(k) = E[v? (k)] (6.9)
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as before. We will be primarily concerned w:th constant values of 7 between 0 and 0.30
seconds. Although we will consider parametricaily a wiaer range of values, note that this
process is not. sirickly speaking. assumed to be staticnary or Gaussian although, in actuality,
it is only siowly varyirg and slightly non-Gaussian.

A digital noise genveration program. required for simulation purposcs. is discussed and
presented in Appendix A. The algorithm, based upon a paper by L. F. Balas (1967). will
gencrate noise of the type assumed by Equations (6.6) to (6.8).

B. RESTRUCTURED KALMAN FILTER

In this section, the details of applying an algorithm to process data with autocorrelated
measurement noise (of the type diccussed in the previous paragraphs) will be prescnted. The
algorithm, from Sage and Mclsa (1971), is reproduced in Table 6.1. Before substituting the
matrices for our system into the algorithm. it was found convenient to rearrange the given
equations for our purposes. The original form of the algorithm consists of two processes:
smoothing and filtering. The author found that it is possible to rewrite these equations so
that the algorithm appears to be of an extrapolation-update form which. of course. is the
method the conventional Kalman filter in Section ! is written in. It was found that this
form requires less computation than the original and van be casily related to the white noise
filter. It is pertinent to note at this time that the Sage and Melsa aigorithm was chosen over
the augmented state approach since the former does not require an increase in the dimension
of the state vector and does not result in ill-conditioned computations. The authors prin-
cipally responsible for the algorithm in Sage and Melsa are Brysor and Henrikson (1968) who |
discuss the relative merits of the two approaches.

LA

Let us now consider the smoother/filter algorithm in Tasle 6.1. Notice first that the |
residual for the smoothing and filtcring equations. Equations (8) and (91, are identical. We y
will define this new a priori residual as
pk/k- 1) = 2(k) - Wkok- Dzk- 1) - BYk- DEK- k-1 (610
If we substitute the definition of H (k - 1) from Equation (7). we find we can write
pkik- D) = pkik- 1) - Wkok- Dtk- 1/k- 1) (6.1
where 4
wk/k -~ 1) = 2(k) - H(k;g(kik- 1) (6.12)
is the usual residual for the white noise filter and
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Table 6.1. Smoother/Filter Algorithm for Autocorrelated Measurement Noise

MODEL

xtk+1)= ¢k +1.k)x(k) + w(k)

OBSERVATIONS
2(k) = H(k) x(k) + (k)

Mk +1) = W(k+1.k)xk) + 3(k)

STATISTICS
Elwk)] = Ef()} = E[w()$T ()] = 0
E{w(r wT (k)] = Q(kidy

E[£ ()T = R* ()5,

DEFINITION

H%k - 1) = Hk)otk. k- 1) — w(k.k— DH(k -1

SMOOTHEK
Xk - k) = x(k Ik - 1) + Ktk — 1) [z(k)

- Wkk~-Dzk—1) - H*&k—Dxk—1/k- D]

FILTER
X(k/k) = o(k, &k~ D k(k~1/k) + K¢(k)[z (k)

- ¥k k-Dzk~-1 ~ HY%k - Dxk-1/k=-1)

(8

h

56

-




Table 6.1. Smoother/Filter Algorithm for Autocorrelated Measurement Noise--(Continued)

SMOOTHER GAIN
Kdk=-1 = Pk~ 1k~ DHT(k - DIH* &k - DPk - Vk- DH*Tk- 1)

+ R*k - 1) + HIK)Q(k - DHT(k)} (10

FILTER GAIN
Koky = Qtk - DHT (R [H*Kk - Pk - k- DH* Tk - 1)

+ Rk - 1) + HK)Qik - NHY (k)] ™! (1

SMOOTHED COVARIANCE
Pk—-1/ky = I - K (k- DH k- D] Pk - I/k~ 1)

H-Kgk~DHY& - D] + Kk-D[RYK - D + HK)Qik- DH (WJKI(k- 1 (12)

FILTERED COVARIANCE

Pek/k) = otk k— DP(k— /k)of (k. k— 1) + Qtk= 1)
- KK [H*k - WPk~ 1/k- DH*T(k— 1) + R*k -1
+ HOQk ~ DHTKIK] (k) — (k. k - DK (k - DHK)Qk ~ 1)
- Qk - DH'(KKI(k - o'k k- D) (13)
wWk-1/k-1)=2(k-1)- Hk- D xk- l/k- 1) (6.13)

is the a posteriori residual from the previous filter cycle. We will now define
n(k) = V(k.k- Dek-1’k- 1 (6.14)

which is cssentially the correfated portion of the old residual that we want to remove.
Therefore, Equation (6.11) becomes
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PHER- D = k- D) - k) (6.15)

Sinice the smoother and filter equations are of similar form, it is casily scen that the two
equations can be combined to produce “extrapolation™ and “update” equations. identical
in form to the white noise filter. lLe.,

X(kik - i) = ok k- Dxtk-1/k- D (6.16)
and
X(k/k) = &k/k- 1) + K*K)p*kik- D) (6.1
where
K*Kki = ¢oik. k- DKk - ) + Kek) (6.18)

is the cquivalent gain.

Now let us consider the gain matrices. Notice that the invere of the matrix

Giky = H%k- DPAC- k- DHTG- Rk - 1) + HBI Gk~ DHTK) (6,19
appears in roth gain equations. Le..

Kih- 1V = Pk- T'k- DH*Tk - G T (6.20)

Kp(k) = Qik- DHT (G Tik) 6.2
Therefore
K®(k) = [¢tk. k- Pk~ I/k- DH*T(k- )+ Otk - DBHIGD] G2 (k) (6.22)
By definiag the extrapolated covariance as before. i.e..
Pb - 1) = otk k- DPk- k- Deltkok- 17 + Qtk- 1) 6.23)
we can then write

K*(k) = [Ptk - DHT(K) - Atkd (0 LK) (6.24)
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and

G(k) = H(k) P(k/k - 1) HT(k) + R*(k- 1) + B(k) (6.25)
where

Ak) = ¢(k. k- DP(k- 1/k- DHT(k- D¥T(k. k- 1) (6.26)
and

B(k) = W(k,k- DH(k 1)P(k- I/k- DHT (k- D¥T(k, k- 1)

H(k) ¢(k. k- DP(k- i k- DHT(k- D¥T(k, k- 1) (6.27)

P(k.k- DHk- DPk- 1/k- 1)¢T(k. k- 1)HT (k)

Obviously, if ¥ vanishes, then both A and B vanish and R* = R. We therefore recover the
original form of the white noise gain equation.

Now ‘we¢ will consider the error covariance equations. The smoothed error covariance
equadon. Equation (12). can be rewritten in a much simpler form by expanding the fe=t
term and recombining. making use of the gain equation, i.c..

P(k- 1/k) = P(k- I/k-1) + K. DH*k- DPk-1/k- DHT (k- DKT(k- D

- P(k- 1/k- DH*T(k- DKT(k- 1) - K¢(k- 1) H¥(k- D) P(k- 1/k- 1)

+ K(k-DIR*k- 1) + HK)Q(k- DHT(K)] KT (k- 1)

= Pk~ H/k- D+ Kk- DGKRIKT (k-1 =tk=- i/k- 1) H¥T¢k- D KT(k- D
- Ky(k- DH%k- DPk- 1/k-1)

= {1- Kok~ DH*k- DI P(k- t/k- 1) (6.28)

Using the smoothing guin cquaiion and the 1oot that P and G are symmetric, we can also
~.ite this equation as

P(x- 1/k) = Pk~ 1/k - Y - K(k- DGR Ki(k- 1) (6.29)

Using the filter gain equition. we ¢1n also simplify the filtered covariance equation.
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P(k/k) = @in. k= DPK- 1/K)¢T(k, k- 1) + Q(k- 1) - Qk- 1) HT (k) KT (k)

d(k. k- 1) Kg(k- 1) H(k) Q(k - DHT Q(k- DD HT() KT (k- 1) ¢T(k, k- 1)
(6.30)

o(k. k-~ DP(k- 1/k)¢T(k. k- 1) + Q(k=- 1) - Q(k - 1) HT (k) K*T (k)
- olk.k- DK (k- 1) H(K) Qk- 1)

By substituting Equation (6.29) for the smoothed covariance and then for the smoothing
gain, we find

P(k/k) = (k. k~ DPk- 1/k- DTtk .k-1) + Qk- 1}
- [otk k- DKk~ D] Gk) [¢tk. k- D K(k- DT

- Qk- DHT(K)K*T(k) - o(K. k- 1) Ki(k - 1) H(K) Q(k - 1) (6.31)

Pik/k - 1) - [K*(K)- Uk -DHT (k) G-1 (k)] G(k) [K*(K)- Qk - DHT(k)G-1(k)]T

- Qtk- DHUKK*T(K) - [K*(k)- Qtk- DHT ()G 1 (k)] H(k)Qk- 1)

P(k/k - 1) - K*k) G(k) K*T (k)

which is of a form identical to the white noise filter. A summary of the equations for the
equivalent extrapolation/update algorithm is found in Table 6.2. Upon comparing this
algorithm with the white noise filter (Table 2.1), we find that the correlated noise algorithm
requires the additional calculation of A(k). B(k) and ntk). A FORTRAN 1V version of this
algorithm, called CORKAL. was writien by the author and can be found in Appendix A.

We now apply this algorithm to our model.

Our model will now consist of the current version of the dynamics and prediction, as
developed in the previous sections, but we will add the cor. lated noise model. The measure-
ment noise transition matrix is

Yk.k-1) =¥ = [p(k)] (6.32)

The standard measurement noise convariance matrix R will be replaced by the white meas-
urement noise.

R*k) = [o& (k)] (6.33)
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Upon substituting these matrices into the algorithm, we find that the complicated matrix
expressions reduce to rather simple algebraic calculations for our problem. The matrix A is
(3 X 1), and B and n are scalars. The algorithm with the indicated modifications can be
found again summuarized in Table 6.3. (None of the filter algorithms considered in this
section are adaptive. The adaptive versions are exactly analogous to the white noise models
in Section V.)

Table 6.2. Equivalent Extrapolation/Update Algorithm
for Autocorrelated Measurement Noise

MODEL
x(k+ 1) = ok + L K)x(k) + w(k) (h
' OBSERVATIONS
! k) = Hik)x(k) + v(k) (2)
wk+ D= Wk + LKk + E(k) (3)
:
~ STATISTICS
' Elw(k)] = E{£(K)] = E[w()ET (k)] = 0 (4
| Elw(hw" (0] = Qk)s, (5
1 ELZ(G1ET (0] = R* (k)8 (6)
STATE EXTRAPOLATION
x(k/k=1) = ¢k, k= DRk~ 1/k = 1) (N

COVARIANCE EXTRAPOLATION

Ak) = o(k. k~ NPk~ 1/k- HH (k- D¥T(k. k- 1) (8)
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Table 6.2. Equivalent Extrapolation/Update Algorithm
for Autocorrelated Measurement Noise--(Continued)

B(k) = W(k,.k— DH(k- DP(k~ 1/k - DHT(k - D¥T(k, k- 1)

~ H(k)¢(k, k~DP(k~ i/k- DHT (k- D¥T(k,k~ 1)

- ¥k, k~DHik - DP(k~ 1/k - 1)¢T(k, k— DHT (k) 9
P(k/k—1) = ¢k, k- DPk—1/k- DT (k=D + Qkk-1) (10)
GAIN
G(k) = H(KP(k/k = DHT(k) + R*k -1 + B(k) (1
K*k) = {P(k/k - DHT (k) - A(K)IG™V (k) (12

STATE UPDATE

x(k/k) = x(k/k =D + K¥Kk) [z(k) - HKZKEK - 1) ~ n(k)] (13)
COVARIANCE UPDATE
Pik/k) = P(k/k - 1) ~ K*(K)G(K)IK*T (k) (14)

A POSTERIORI RESIDUAL

nk) = W(k. k- 1) {z(k) - Hk-1)x(k- 1k~ 1)] (15)
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Table 6.3. Filter Equations for Correlated Measurement Noise: A Summary

STATE EXTRAPOLATION

Xy (kfk=1) = % (k= 1/k~1) + Atxa(k—1/k—1) + axz(k=1/k=1) §))
ka(kfk = 1) = Xk =1/k—1) + Bxs(k~1/k—1) (2)
x3(k/k —1) = yX3 (k= 1/k=1) 3

CORRELATION MATRICES

A (k) = p(K)P, (k= 1k — 1) + AtP,(k—1/k—1) + aPj3(k— 1/k = D)] 4
Az(k) = p(K)[Pp(k = 1/k~1) + BP3(k - 1/k = 1)} (%
Az(k) = p(k)P 3k = 1/k = 1) (6)
B(k) = p2(k)P,,(k— I/k = 1) — 2A;(k) N

COVARIANCE EXTRAPOLATION
P (k/k=1) = Py (k= 1/k—1) + 28tP (k= I/k— 1) + 2aP;3(k—1/k - 1)
+ AtPyy(k — I/k - 1) + 2aAtPy3(k— 1/k = 1) + &®Py3(k = 1/k~ 1)
+ Q (k-1 (8)

Plz(k/k" l} = Plz(k" l/k" ') + jjpls(k‘ l/k"' l) + Atpzz(k— ‘/k"’ ‘)

+

(@+BADPy;(k = 1/k = 1) + afPyy(k = 1/k= 1} + Q5(k= 1) (9

Pi:,(k/k" !) = 7[’,3(k" I/k_ !) + ‘7Atpz3(k- l!k"‘ l) + a7p33(k- l/k"' l)

+ Q‘J(k—l) (10)
Pya(k/k = 1) = Pyp(k = I/k = 1) + 28Pyy(k—1/k = 1) + @2Pyy(k~1/k—1
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Table 6.3. Filter Equations for Correlated Measurement Neise: A Summary—(Continued)

Py3(k/k— 1D

GAINS
Gik) = Py (k/k—1) + o2(k~1) + B(k)

KJk) = {P (k/k =~ 1) — A (K)}/G(Kk)

K3(k) = [Py(k/k = 1) — A5(K)]/G(k)
K3tk) = [P 5(k/k = 1) — Az(K)}/Gek)
RESIDUAL

yok/k=1) = 2(k) - X (kik = 1) ~ (k)

STATE UPDATE

K (k/K) = &, (k/k = 1) + KH(kw*kik = 1)

Xy (k/K) = Xp(k/k = 1) + K3kw*k/k— 1)
%3(k/K) = K3ik/k ~ 1) + Kj(kw*(k/k - 1)

atk+ 1) = p(k+ 1) [£(k) - & (k/K)]

COVARIANCE UPDATE

P, k/k) = P (k/k ~ 1) = G(KOKJ(KIKT(K)
Fia(k/k) = Ps(kfk = 1) = G(KKT(KIK3(K)
P s(k/k) = P j(kik = 1) — G(KIKTik)IK3(k)

P, (k/k) = Ppyek/k - 1) — G(K)K3(k)K3 (k)

YPyi(k— 1/k = 1) + Qy3¢k = 1)

TPk = 1k = 1) + ByPyy(k - t/k—1) + Qy3(k— 1)

(14)
(13)
(16)

(1N

(18)

(23)
(24)
(25;

(26)
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Table 6.3. Filter Equations for Correiated Measurement Noise: A Summary—(Continued)

Py3(k/k) = Py3(k/k ~ 1) ~ G(k)K3(K)K3 (k)

Ps3(k/k) = Py3(k/k ~ 1) - G(K)K3/K)KS(k)

INITIALIZATION

Xy (0/0) = z(0)

%2 (0/0) = %3 (0/0) = 0
P,1(0/0) = 02(0)
P,2(0/0) = 0.

P,3(6/0) = 0.

P,2(0/0) = 03(0)
P,3(0/0) = 0.

P;510/0) = 63(0)

CONSTANTS

T = exp (Atfry)
B=rny(l-7)

o= 7d(y+Atfry ~ 1)

= exp (—At/r)

PROCESS NOISE (CONSTANT)

Q33 = 24ato} /7y

27)

(28)

29)
(30)
(31
(32)
(33)
i34)
(35)

(36)

37
(38)
39)

(40)

41)
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Table 6.3. Filter Equations for Correlated Measurement Noise: A Summary--(Continued)

Q3 = AtQ;;/2 42)
Qzy = 241Q,;/3 43)
Q13 = Qya/2 (44)
Q; = 341Q,;/ 45)
Q= 241Q,/5 (46)
PREDICTION

Xp(t+1,/0 = X (/1) + X(t/01, + i;n!t)ff,(exp(ﬂpirp)

+ tfr, = 1] (47)

C. RESULTS AND SENSITIVITY

We will now apply this algorithm to assess the effect of measurement correlation on
filter performance. The fatest version of the filter and predictor. as developed in previous
sections, remains the same in form. The correlated noise filter simply adds some additional
terms. [t should be noticed that the case of 7 = 0 (white noisw) recovers the ideniical results
as before. Figure 6.1 presents the results for this case and also those with several other
values of up to 7= 1.0 second. As expected. the presence of autocorrelation in the measure-
ment ervors tend to degrade filter performance both from the standpcint of settling time
and steady state values. This is explained by the {act that the data being processed is not as
informative (duc to the preseiice of the random bias) as independent data. In fact. the

performance degradation is rather severe when the correlation time is greater than 0.1 second.

Of course. the amount of serial correlation is a function of the particular sensor sysiem and.
therefore, not a parameter under our direct control. From a software standpoint. we simply
have to live with whatever sensor autocorrelation  and subsequent performance degradation
with which we are presented. [t is hoped. however. that this consideration will be properly
weighed. undoubtedly slong with many others. when decisions as to a choice of sensor suits
are effected.

For the one-dimensional work. values of the measurement error standard deviation of
o = 5 and 20 yards were assumed and used throughout the report in all sections that dea!
with only one-dimensional filtering. In fact. we have always nomalized our criteria
oy (t+10/0) by 0 as if gy (t + 10/0) were then independent of u. While this is true for
certain cases (see Section I, for example), it is not exactly true in general. Therefore. in
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Figure 6.1. Correlated Measurement Noise Filter with Various Noise Correlation Times
ﬁ ’ 7 Normalized Standard Deviation of Predicted (10 second) Position Error
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this section where we are considering the effect of one uncontrollable sensor parameter 7. it
scems appropriate to consider another, i.e.. a. in Figure 6.2, we have therefore plotted a few
cases with different parameters in order to see the effect, Examples with white noise (7= 0)
and one with colored noise (7 = 0.30 seconds) were chosen. As can be seen, the effect is not
large but is not negligible. We find that the larger the value of g. the smaller the steady-state
value of o (1 + 1G/1). This indicates that the actual performance criteria. g, (t + 10/t). has
less than a one-to-one sensitivity to o.

100 gy
k = 16 Hertz Oy= 0.1 ytrds/?econdz
O32(0) = 200 yards/second Tu = 20 seconds
03(0)= 10 yards/second’ Ty = 20 seconds

10
5
S
=
-
Y {0, T)
Lo .y — tic,030)
o I\ S ——— (R
_ N P (10,0)
_ AN T (40,0.30)
- ‘\\ (20,0}
i T (40,0
-
0.1 A -1 1 A
) 10 20 30 40 50

TiME t (SECONDS)
Figure 6.2. Correlated Measurement Noise Filter and Various
Combinations of o and 7 Normalized Standard

Deviation of Predicted (10 second) Position Error
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While previously discussing the question of a reasonable vange of values for 7. we
alluded to the fact that we cannot always expect 7 to be the same constant. In fact, we
should expect our estimates of ;he sensor statistics to merely approximate the average
behavior of the sensor system. When the sensor system is operated under various conditions
and tuned by various personnel, we should expect some variability from our estimates to
be realized. We then want to consider the degradation in filter performance--i.e., the
sensitivity when the actual sensor parameters are other than those assumed by the filter.

In order to do this. we must again calculate the value of the actual covariance when the gains
are computed subontimally (with the wrong values of 7 and o denoted by the subscript f)

and compare this owariance with the optimal covariance. For the serially correlated measure-
ment error filter. the actual covariance is propagated by Equation (2.16) in the extrapols-

tion stage (the same as the white noise filter) and by the following equation for the update.

Pact(kik) = Pacr(kik- 1) = [Pacr(k/k - DHYep (k) - Agep (k)] KT (k)
~ KIK) Hacr (K Prer(k/k- 1) - Alerpthd 6.34)
+ K(k) Gacr(k) KT ik)

where Ager (k). Boet(K) and G4 1 (K) are defined in Table 6.2 with the actual values. We
again use 0. as defined in Equation (4.17). as our figure of merit to measure optimality.

In Figure 6.3. 0 is plotted for our standard problem t, = 10 seconds integrated for
T = 50 seconds. In (a). the ratio of the actual to assumed value of 7 is allowed to vary from
0 to 2 for several assumed values of 7¢. Similarly in (b). the ratio of the actual assumed
value of o is allowed to vary from 0.25 to 2.00 for both white noise (r = 0) and colored
noise (v = 0.30). In both cascs. we find greater sensitivity w hen we overestimate the param-
eters {7 > 1 and g¢ > o) and only very modcerate performance degradation when we under-
estimate. In cither case. it takes a severe error in the sensor parameter estimates to seriously
degrade the Kalman filter. This is somewhat surprising and comforting since such filters
tend to rely rather heavily or a priori estimates. We conclude that it is desirable not to
overestimate 7 or o
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Before leaving the subject of autocorrelation noise, let us consider one more question.
It is interesting to determine the cost involved if autocorrelated noise were processed by a
white noise filter (ry = 0). With this information in hand. we also want to consider the

relative performance of the effective white noise. suggested by D'Appolito (1971). D Appolito

says that an equivalent white noise of variance

0%y = (-:—f—g) o? (6.35)

“will produce the same estimation error as the original first order Markov process of variance
o2, Notice the factor multiplying 02 is always greater than one.” In Figure 6.4, 6 is again
plotted for the case of 7y = 0 (white noise filter) when the actual noise has correlation time
. We find that. if the measurement ervor standard derivaiion assumed by the white noisc
filter og is equal to the no:inal value 0. the performance drops off rather sharply when 1 is
greater than At (1/16 second here). Unfortunately. this analysis also indicates that the
cffective white noise (0¢ = a.¢r) performs no better and, in fact. considerably worse as the

1.0
0.8
06
3
-
S 04
e
®
0.2 G" =z ﬂ"
00
T = Oott
O-O ) B ] } '3
0] o X] 0.2 0.3 0.4 05
T

Figure 6.4. Performance of Wh:te Noise Filter with Various Values of o
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correlztion time grows, Since increasing the nominal measurement error does not help, as

an experiment the variance of the whiic noise driving term for the first-order Markov process
was tried. We see frcm Equation (6.9). that o, is less than the nominal value ¢. This value
(g4 = v, ) produces about the same results as for og = 0. We conclude, therefore, that near-
optimal performance (¢ = 0.9). for the white noise filter is obtaincd only when 7 < At. For
r > At. the white noise filter performance drops rapidly. It does not appear from this
analysis that a white noise filter with an equivalent white asise (other than of = o) will help.

A final decision on the use of this correlated measurement noise algorithm must depend
upon the final selection of a sensor suite chosen for the fire control system.

VII. TECENIQUES FOR THE REDUCTIO!N OF COMPUTATIONAL BURDEN

Several aspects of the filter developed to this poiat. such as 3 desire for a high data
rste and reai-time covariance propagation. begin to impose a significant computational burden
on a small digital computer that might be utilized in a fire control system. Furtner develop-
ment of the three-dimensional filter (in Section 1X) and the addition of the dual-bandwidth
adaptive features (in Section V) serve to multiply these computational requirements. Ob-
viausly, anything that can be done to reduce the calculations required by the basic one-
dimensional filter could be significant. In this section. two possibilities are explored.

The high cycling rute of the filter might possibly be offsct by data compression or
~prefiltering.” i.c.. provessing data at a higher rate than the filter cycles if this can be donc
without significantly degrading performance. The real-time propagation of crror covariance
on 1 fuwed-point computer of limited word length (say 16 bits) poses other probiems. Con-
sidening the potential range of the clements of the error covariance matrix. which involves
the squarcs of both rather large and rather small numbers during onc run. it was found that
such a computer woald have to perform the covariance calculations in double precision in
order to alfow sufficicnt scaling. There is also the possibility of the loss of the positive
definite property. required for the error covariance. duc 2o nemerical error that results from
finite word length calculations. Such a condition is disastrous as it usually keads to in-
stability and ultimately total fatlure of the filter. The possibility of this occurring for our
case is rather remote. however. since process noise is always added which tends to place a
well-defined lower bound on the steady -state error covariance. These problems can he
climinated through the introduction of an crror covariance square root which can be propa-
gated in ple ¢ of the covaniance. There are also other possibilities for determining P such as
the informatic » matrix (the iiverse of error covariance) or iis square root. but these will
not be expliorea -1 this report.

Another ver, inportant possibility. currently under investigation and not included in
this report. is the oo« Lbility of using functional approximations for the error covariance
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maiX, Such functions would be computed in the laboratory prior to implementation and A
. would be functions of time as well as all the parameters (i.e., At, 0,0y .and 7y ). Th:zap-
proach presently being studied would work as follows. The error covariance matrix s
calculated (via the Kalman filter equations) as a function of time and over a range of all J
the parameter space and stored on the computer. The steady-state solution is first fit using 1
least squares over the parameter range. (Work is also under way to <olvc exactly the steady-
state nonlinear matrix Ricotti equation for P but 2 solution has not yet been obtained.)
Then, knowing the steady-state solution and the initial conditions, the transient phase is
fit as a function of time. The resulting functions are then used to calculate the gain matrix
3 in the usuai fashion. A sensitivity analysis is performed in order to assure an accurate ap-
proximation for the optimal gain. If this werk is a success, most of the computational
F burden of the real-time Kalman filter~which is due to the error covariance equations- can
be eliminaced. The author is quite optimistic as to the future of this method and its appli-
cation to the GFCS filtering problem.

A. PREFILTERS

Prefiltering, as the term will be defined i1 «iis report. means the processing of data
which is available at a rate higher than that at which we wish to cycle the Kalman filter. It
i5 also commonly referred to as data compressici:  Suppose. as shown in Figure 7.1, that the
Kalman filter is cycled once cvery At seconds but that we wish to process data at an integer q
rate u times the filter cycling rate. We will therefore have 4 measurements, equally spaced
At/u apart, that will have been made since the last filter cycle at time t(k - 1) and which we
want to process at time (k). There are undoubtedly several possible methods of aggregating
(or lump..ig) or otherwise smoothing these additional measurements, However, w : wili con-
sider (for now at least) the siriplest effective method of doing this. namely, ave;: ging.

P Y .

As Warren (1974) points out. for short time intervals where the measurement noise
essentially masks any time variation in the signal, data averaging is an effective means of data
compression with small loss of information. Actually, we are not quite (but almost) in the 1
region of applicability of this finding. For example. if we want to Compress measurements
from 16 to 4 Hertz. there is actualiy some “elocity information that could be 2xtracted from
the measurements. The variance of this velocity estimate, however, is so large. relative to
that already available in the Kalman filter. that its inclusion mukes essentially o inuprove-
ment. There is, however, a significant increase in the computation reguired to rseess such
& velocity “measurement.” We will therefore compute 25 equivalent prefilterea measure-
ment based upon a technique simifar to data averaging-residual averaging, By averaging the
a priori residual as opposed to the measurements we account for the ( estimated) target
motion over the prefilter interval.
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Measurements available every At/H

4 MEASUREMENTS

1
4 i:l i=2 X i;:_ﬁL AI/}'L
EEEEENNN
At - At
t(k-1) t(k) t(k+1)
(k=14 /1)
Kalman filter cycles every At
Figure 7.1. Prefilters--Rewation of Measurement and Filtering Timing
The averaged (or prefiltered) residual is simply
oA
vprlk/k - 1) = u vk~ 1 +ijpik-1) (7.1

All notation in this section on prefilters will be referenced to the filter cycling rate so that
times will be in fractions (i/u) of the time between filter cycles, At. Substituting the defini-
tion for the u priort residual, we find

LA . . .
vprtk, k- 1) —;‘-; [z(k- 1+ i/p) - Xp(k-1+ ifulk-1)]
(1.2)
o4
= 7(k) - -;Z Ap(k- 1+ ifuik - 1)
i=}
where
l 1 u
7(k) = — 7k - 1+ i/w) (1.3)
L
4




LY

is the average measurement. It is convenient to express the estimates x; at times (i/u) At
relative to the extrapolated value at time tx. This is done using the transition matrix and
can easily be found to be
Xp (k- 1+ifpik-1) = %;(k/k- 1 +(—:;- l) At X5 (k/k- 1)
(7.4)
+ oG i3(k/k‘ l)
where
of(E-ad] = B+ ) ay 7
oG = Q . t| =1y . /v -1 (7.5)
Substituting Equation (7.4) into (7.2) and taking the indicated sums, we find
- 1S
vor(k/k - 1) = Z(k) - X (k/k- 1) + 1--;2 i| At %y (kjk - 1)
LTY
l i:u ‘7.6)
o ;) X3(k/k- 1)
=y
We therefore detine the effective prefiltered measurement as
zi(k) = Z(k) + my Xy(k/k - 1) - m3 X3(k/k- 1) (.7
where
I
uy = At (l-——’- l) (78
\ B =
and
| LS :]' (7.9)
= 75} — fn ~ - .
B3 M Y Z: Y J ™ K2
i=]
re constants computed once before implemeatation. Therefore
vpr(k/k - 1) = 2,0(k) - Xy (K/k- 1) (1.i0)
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We note that if u = 1. then gy and g3 vanish and z,¢(k) becomes z(k) as before.

Let us now consider the effect of prefiltering en the measurement error statistics. From
Equation (7.7). it is obvious that, strictly spesking. an error in Zp i 4 function of the errors
e€x(k/k - 1)and e3(k/k - 1) as well as the measurement errors. However, consideration of
the small values of ua and p3 reveal these effects to usually be negligible. Under this assump-
tion. we find that the prefiltered measurement error is simply the average of the individual
measurement errors. That is

iTp
Vor(h) = Zv(k S (7.11)
=1

1
T

The standard deviation of the prefiltered measurement error is (assuming the measurement
error standard deviation constant)

ok = E v (k]

i 15g iTu (7‘2\
==k Z Z vik - T+im vik 1 +j/m

izl =1

The tesm in the brackets is the average autocovariance of all the measurement error pairs.
Each of these can be expressed in terms of the nominal autocorrelation coefficient for lay
At as

Rij = EIVik- 1+ V(k - | +j)]
= g2(K)eap |- i) - trir)
(7.13)
- il At
= ¢2(k) exp [— -——5—-—]
RT
= o2(k)ptk)'* Jom
Sub- tituting into Equation (7.12), we find
3 . L) l l='# N s
optk)os (k) = — ptK)t Jm (.14
T 13- i
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Notice that, if p(k) equals zero (white noise). and noting that 0° is unity. of,f( k) o2(k)is
the familiar 1/u. A similar expression can be written for the autocosrelacion of the V pr(k)’s
which is

Rpe(k. k= 1) = E [Vpe(k) Vpe(k - 1] (7.15)

Using Equation (7.13), we find

W
®
5
3

p(k)ii-i+ wilu (7.16;

=
M3
i)

Rpe(k. k - D/o2(k) = —

[

In this case. if p(k) is zero. Rpp(k) is zero. Therefore. if the original measurement errors are
uncorrclated., the prefiltered measurement errors will also be uncorrelated. Also.ifu= 1.
we recover o(k) = 62(k) = 0% (k) and Rpe(k. k - 1) = 02(k) p(k).

The correlation coefficient for the prefiltered measurement errors is
ppt(K) = Rppik k- D/ad(k) (747

and the effective prefiltered mcasurement correlation time constant can be calculated. if
desired, as

Tor(k) = At/En {1ppe(k)] (7.18)

In Figure 7.2, the ratios of 0,¢/0 and 1p¢/7 are plotted as a function of p (as though u
were a continuous variable). Since 0.¢/0 and 7,/7 are functions only of u and the nominal
correlation coefficien? p. several values of 7 were chosen to specify p. The nominal data
rate is k = 16 Hertz so that the filter cycling time for cach value of  on the graphs is At =
#ik. We find that the ratio op¢/o is aiways < 1 for p > |, ard the measurement error reduc-
tion is greatest for the white noisc zase. The ratio of 7p¢/r 15 > | and increases, on the other
hand. as g increases. The ratio decreases as 7 increases, however.

Let us now consider the effect of prefiltering on filter performance. We find there are
three factors whose interaction we must consider. The increase in the time increment be-
tween filter cycles (a reduction of the filter cycle rate) and the increase in the autocorrela-
tion of the prefiitered crror both tend to increase covariance and thus degrade performance.
Fortunately, however, the decrease in the prefiltered measurement error variznce tends to
decrease the error covariance and improve filter performance. The net effect on filter ner-
formance was found to be essentially negligible with less than 2 percent variation in g, (1 +
10/t) when 1 ranges from O to 0.5 seconds and u vaties from | to 10. It has therefore been
concluded that this method of prefiltering. based upon residual averaging, offers us a
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Figure 7.2

computationally inexpensive way to achieve high-data-rate filtering with negligible sacrifice
in performance relative to high-data-rate full-Kalman filtering.

A small problem was encountered from the use of this method of prefiltering which
will now be discussed along with the solution. As mentioned previously. the residual aver-
aging technique of prefiltering causes the actual effective measurement error statistics to be
a function of the estimation error. as can be observed in Equation (7.7). It was previously
assumed th.at this portion of the prefiltered measurement efror was negligible as far as the
calculation of the effective prefilter statistics is concerned. This assumption is valid except
during the initial covergence period when the estimation error covariance is quite large.
Upon comparing the calculated covariance with the actual (simulated) Monte Carlo error. it
wis discovered that, during the initial covergence interval, the actual errors consistently
exceeded the calcuiated error standurd deviation but that the effect disappeared after a
couple of seconds. The author refers to the phenomenon as “prefilter lag.” which can be ex-
plained by considering Figure 7.3. Duning the initial convergence period. the expected
value of the residuals evaluated at the times of actual measurement, as shown oy the circles.
can significantly increase over the prefiltering interval At. The lag problem occurs because
an average of these residuals does not have the expected error level (variance) that the filter
calculates. The standard deviation of the actual residual averag. is always less than the value
which the filter expe.ts. o, (kik - 1).

After trying several methods to rectify this situation, the author finally found a tech-
nique whereby the prefiltered residual would be “scaled up™ 5o that its variance would
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Figure 7.3. Conceptual Diagram of the “Prefilter [ ag” Problem

79




A

£

match that calculated by the filter. This was done as follows. First it was noticed that the
variation of o, over the interval At is approximately linear (since velocity estimation error
dominates) so that we can write ¢, evaluated at the measurement points i as

0.(i) = (I -iwo,k- k- 1)+ (i/wa,k/k- D (7.1
The average virine of g, (i) occurs at the point i = (u - 1)/2 or
+1 -

Oy Ay i) = ("—,;'—)a..(k -Uk- 1 + (—,—l)o‘.(kfk -1 (7.200

Finally. the factor by which we want to scale the prefiltered residual is 6,.(k/k - 1o,y (; (k)
W

X 1
) = 7.2
fpr,.4K) r +r,.¢_k)} fr,.ﬂ;}- 11 (7.2h
H +
L 2 T
where
ik) = gk~ 1/k- 1ve,.(k:ik - 1 (7.2

is the ratio of residual levels across the interval, Clearly . of there is no prefiltering (u = 1) or
if the filter is in steady-state operation (r = 1) this factor is one and does not influence
performance. 1t was observed. however. that this prefiltered residual scaling clininated the
prefiiter I entirely and was an ¢cconomical “fix™ to implement.

Concerning future work in the area of prefiltering, the author believes that an even
greater amount of data compression can be achieved by using simple data processing tech-
miques such as least squares. The author, us stated previously. feels that target motion is
highly band-limited in that the upper limit of frequency is fairly discernible from acro-
dynamic limitations of aircraft and missiles. Consideration of the Shannon sumpling
theorem. with the usual factor of ten put in (o account for noisy diuta. tells us that it is
necessary to cycle our target motion estimator at only 2 to 1 Hertz, Actually. cycling at
I Hertz is marginal. according to Shannon, but we are probably not interested in (or capable
of) actually recovering all the very highest frequency target motion but merely want to track
through it without diverging. Alsc. verv-high-frequency target s. celeration usually results
in very smali actua! displacement that tends to be unobservable as it is down in the meas-
urement noisc. A simple, constant-velocity least-squares fit over, say. a compression interval
of 1 second and a data rate of perhaps 32 Hertz appears very attractive at this time and
should be performance-tested as soon as possible.
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B. COVARIANCE SQUARE ROOT

The covariance square root method always insures a symmetric positive definite error
covariance matsix. More significantly. the square root formulation can propagate tise crror
covariance in single precision as accurately as the conventional error covariance methods
do in double precision. Basically, this technique propagates a matrix S, instead of P, where
S is defined by the relation

PCk/id = S(k/5) ST(k/j) (7.23)

This definition of S is not unique. however. For example. in our situation. Pisa (3 X 3)
symmetrix matrix specified by 6 variables. Since S is also a (3 X 3) matrix, for which 9
variables are required for specification, we find ourselves with three exira degrees of freedom
in S which might be used advantageously. We have chosen. for reasons to be made clear
shortly. to complete the definition by requiring S to be upper-trizngular. As we shall find.
the definition of S as upper-triangular does not insure that S will remain in this form when
propagated through the filter equations. The upper-triangular definition of S requires

Pri(k/i) = S (kM) + ST(k/i) + STk (7.242)
Pyatk/y = Spatk/p) Saatk/jy + Sy3(kf5) Saz(k/i) (7.24H)
Pyatk/id = Sya3(k/jy S33(k/j) {7.24¢)
Paatk/i) = S3,(k/j) S33(k/j) 17.24¢)
Pa3(k/i} = Sa23(k/j} S33(k/j) (7.240)
P33(k/j) = S33(k/j) {7.240

The inverse refations are

Sa3(k/j) = /Pask/j) (7.250)

S13(kij) = Pa3(k/j)S33(k/j) {7.25%)

Saa(kfj) = /Pra(kij) - S3;(kij) (2.25¢)

Sistk/iy = Py3(k/i)/S33(k/j) {7.254)
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S12(kiiy = [Ppa(k/) - Sy3(kfj) S23(k/i)1/S22(k/j) (7.25¢)

Si(kfi) = /Pukfi) - S§,(kfi) - S%;(k/j) (1.250)

Now et us consider the filter covariance equations as given in Table 6.2. The error co-
variance extrapolation equation can be written as

Pk/k- 1) = P(kik-1) + (k- 1) (7.26)
wheie
Pk/k- 1) = (k. k- DPk- 1/k- 1)oT(k. k- 1) (7.27

1t is easily scen that the extrapolation to P'tk/k - 1) can be equivalently accom,.!:shed by
the square root as

Stk/k- 1y = k. k- Sk- I/k- 1) (7.28)

Applying the transition matrix for our case, we find that, if S(k - 1/k - 1) is upper-
triangular, then S(k/K - 1) is alse upper-triangular with the following values.

Si(kik-1) = Spy(k- k- 1) (7.293)

Sjakik- 1)

Siatk - I/k- 1) + At Sy(k- k- 1) (7.29b)

Si3(k/k - 1y

Spatk- k-1 + At Ss;ik - 1/k- 1)

(7.29¢)

+ aSiyztk- 1/k-1)
Ssa(k/k - 1) = Saatk - H/k- 1) (7.29d)
Systk/k - 1) = Sza(k- I/k- 1) + 8Sas(k- 1/k~- 1 (7.29¢)
Syzik/k- 1) = ySuk- k- 1) (7.296)

If process noise. Q. is present. the addition of this term poses a more difficult probicm
in the square root covariance formulation. There are several possibie methods, both exact
and appreximate, discussed in the literature. The simplest and usually the fastest of the
exact methods is the sc~called root-sum-square (RSS) operation discussed by Carlson (1973}
aivong others. This technique essentially recalculates the error covanance, using Equation
(7.24). adds the process noise and then takes the matrix square root to determine
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S(kik- 1) = [S'(k/k - 1DST(kik- 1) + (k- )12 (7.20)

This last operation, using Equation (7.25), is commonly known as Cholesky decomposition
in tnangular form. An alternative exact method is the Householder triangularization algo-
rithm, discussed by Kaminski. Bryson and Schmidt (197 1) which maintains double preci-
sion accuracy but with higher computational cost. Schmidt (1970) also discusses—but does
not recommend— a technique which requires two matrix inversions and results in a loss of
the upper triangular form. In addition to considering these exact algorithms, the author
also found the technique of Wu (1973) very interesting. Wu assum- d a square root addi-
sive process noise of 2 form

S(k/k - 1) = S'(k/k- 1) + q'(k~ D) (1.31)

where we might think of q'(k - 1) as equivalent in some sense to Q!/2(k - 1). Equation
{7.31) is admittedly not equivalent to the original extrapolation, Equation (7.26). since two
additional terms appear in the error covariance. That is

P(k/k- 1) = S'(k/k- DST(k/k- D + q'(k- DgTk-D
(7.32)
+ S'(k/k- DG Tk- D+ g'(k- NST(ka-1D

Wu's principal argument for this assumption is that the process noise itself (Q) is
rarely known exactly in the first place. being “basically empirically determined data.™ The
method is also no different. in principle. from the epsilon technigque in which a somewhat
arbitrary process noise is added to prevent divergence. Since divergence prevention and
control of the filter bandwidsh are the primary uses of process noise in our application,
this argument does not scem unreasonable. The main difficulty in Wu's method is in appli-
cation. It is very difficult to control the amount of process noise which we would like to
add. Notice that the last two terms involve S’ so that the amount of process noise actually
added is a function of the current error covariance. These two terms are definitely not
negligible since cach is usually larger than the ¢’ T term. The reason for this is that S’ is
usually much larger than q”. The author found that. by trial and error. it is possibic to find
2 ¢’ (much less than Q172) that produces essentially the same steady-state crror covariance
»s the covariance filter for 2 given situation. Unfortuna:ely. no relation can be found be-
tween q” and Q waich we might use to maintain adequate control over the filter bandwidth.
Wu's method was therefore abandoned in favor of an exact method.

it was therefore decided to use the RSS technigue which is the most efficient of the
exact methods. The equations tor adding process noise arc then (letting W = S(k/k - 1) for
notational convenicnce)

wemmegtaadhgiim,
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Wiz = /S35 + Qi (7.33a)

W23 = (S23 S33 + Q23)/Wy3 (1.33b)
Wi =/SP + S Q- W (7.33¢)
Wi = (S13 833 + Qs3)/W33 (7.33d)
Wi2 = (512522 + $13 8% + Q2 - W3 Wa3/Wp (1.33¢)
Wip =S +S2 +S% +Q - W3, - W2, (7.330

Actually. it might appear—at least it did to the author—that the requirement to calculate
the covariance in the RSS method would undermine the expressed desire (0 retain double-
precision accuracy. The accuracy is not lost, nowever, since in the type of fixed-point
computer in which this is implemented. a double-length word results automatically when-
cver two single length words arc multiplied and a double length word must be used in order
tc obtain a single-length word from the square root. The net result is that, while double
length words appear in the intermediate calculations. all the calculations are really in singhke
precision and very efficient.

Let us now consider the update equation. The original technique for measurement
update of the white noise filter was developed by Potter (1963) for the case of scalar meas-
urements. Unfortunately. the Potter technique is not applicable to the form of the co-
variance update for the correlated measurement noise filter. The Potter form also results in
a loss of triangularity even for the white noisc case. We will therefore again utilize the RSS
method suggested by Carlson in crder to maintzin double-precision accuracy. The co-
variance update cquation, repeated from Table 6.2, is

Pk/k) = WWT - K*(kiG(k) K*T (k)

Applying the modified RSS technique to our equations. we find fagain letting S = S(k/k) for
convenience)

S33 = /Wi, - GKJ? ' (7.343)

S23 = (W3 W3- - GKJK3)/S33 (7.34b)
S22 = /Wi, + Wi, - GK§? - s}, (7.34¢)
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S|3 = (W|3 Wi - G Kf ;‘)/533 (7.34d)
Si2 = (Wja Was + W3 Was - G KT K’Zk - S13 $33)/S23 (7.34¢)
S =V Wi + Wi, + Wi - GK{2 - s}, - st (7.34f)

Equations (7.33) and (7.34) will now replace the covariance equations (8) through (13) and
(22) through (27) of Table 6.3. The gains are calculated in the same manner except that
Equation (7.24) must be used to calculate the required covariances. The expressions for
the A’s are somewhat simpler in square root form, i.c.,

Artk) = p(k) [SP(k/k - 1) + S{a(k/k - 1) Syatk- 1/k- 1)
(7.354)
+ Si3(k/k~ D Sp3k- 1/k- N
Ax(k) = p(k) [Syatk - 1k = 1) Shy(k/k- 1) + Sy3(k - 1/k - 1) Sh3(k/k - 1))
(7.35h)
A3y(k) = p(k) Syatk - 1/k - D Sh5(k/k - 1) (7.35¢)

Initialization of the square root covariance is accomplished by another 488, similar to
Equation (7.25).

In summary. we have found it is possible to reduce the computational burden by a
factor of u by prefiltering without loss of performance. Typically, we might choose u =4
and thereby process data at a rate of 16 Hertz but only cycle the filter at 4 Hertz. By using
the square-root covariance filter, it was possible to eliminate double-precision covariance
calculation, thereby significantly reducing the time required for covariance computation.

In fact, a comparison was performed for the Navy standard mini-computer, the 16-bit

A/N UYK 20, to estimate the difference between the error covariance equations imple-
mented in double precision and the square-root covariance equations in single precision.
The difference was more dramatic than anticipated as the square-root covariance resulted

in a reduction of computer time by a factor of 4.56! This will translate into an overall filter
computation reduction of a factor slightly less than four—since the filter obviously does
other things besides covariance calculations. The combination of both these techniques
reduced the required filter computation time by a factor of 12 to 16 over the high-data-rate
covariance filter. We find that these reductions are well advised since the dual-bandwidth
adaptive filter introduces an increase factor of two and the three-dimensional filter (Section
IX) an increase factor of three. That is, we will be (approximately) able to run a three-
dimensional, double adaptive filter with prefiltering and square root covariance in one half
the time of singlc one-dimensional error-covariance filter without prefiltering.
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Vit *2EDICTION®

This section concemns itself with th: cie= tion of the prediction of future targe? posi-
tion based o~ current estimates of position wnc rates. We will, for the moment. divorce
ourscives from the target models utilized 11 tte filter and reconsider modcls foi the long-
time prediction problem (i.c., tp = 5 to 3G s¢zonds). We will think of the filter only as a
“black-box"™ algorithm which provides as cut;puis estimates of current position, velocity.
acceleration, and associated error covariancz. This information will seive as input to the
predictor. The question is how the predictor can best use this information. The predictor.
of course, is the critical factor in a gunfire control system in that the calculated future target
position is the aim point for the gun.

The conventional method of prediction is to simply extrapolate the assumed dynamics
model used in the filter itself. For example. a second-order derivative polynomsal filter
{with appropriate divergence prevention modifications) that provides estimates of the
(possibly varying) acceleration would predict the position at time 1, in the future as

K (T4 8,/1) = Xy (/1) + (/00 8, + Rt/ ed/2 &N

where X (1/1) is the current state vector estimate. It hias been suggested by some people that
perhaps the estimated acceleration should not be used in the prediction cven though such

an estimats might be available from the filter. This argument is based on the indisputable
contention that ons cannot expect a target 10 maintain a constant acceleration over Jonig
prediction time intervals. Obviously if the scceleration is ignored in the predictor. we simply
predict tangent to the curve and have the constant velocity predictor.

XAt +t,/1) = X (/1) + X (/1) e, (8.23
This predictor is currently more prevaient in operational gunfire control systems.

This technique, of course, sssentially surrenders any hope of,, at ieast partially. dealing
with an accelerating targe!. One is therefore faced with a choice of predictors. and it must
be conceded at this point that. i the general case, one has no way of kinowing what the
target will do in the future. 1t might very well follow cither Equation (3.1)or(8.2) or (more
likely) neither. The prediction time is an i:mportant consideration here. For short prediction
times (say i to 2 seconds), it does not make a great dea! of difference since very few targets
van mancuver at a level o seriously aiter their course in such a short time. For longer pre-
diction times (say 2 to 20 scconds), typifyirg the possible air target projectile flight times
cbserved in large caliber gun systems, it is well known that an air target can alter its course

*This section resulted from discumions of the author with De. Charles 2. Colwen and Mr. Tom Alcxander of NSWC to shom
the author is mdebicd for sugpestions.
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considerably. Indeed. it is the author’s contention that, in an engagement, one should ex-
pect the target not to maintain a constant velocity or acceleration over such durations.

The above reasoning led rather naturally to a consideration of methods of somehow
weighting the acceleration in the prediction equation. The weighting parameters required
could conceivably be estimated by considering the types of target trajectories in a system
scenario to determine parametric values that could improve prediction accuracy. One ap-
proach to this problem can be effected if we again consider the target’s acceleration to be
modeled as an exponentially autocorrelated random variable (as in Section V) and therefore
of a nondeterministic nature. Such a model would conceivably contain any target maneuver.
be it the exercise of deterministic strategies, evasive maneuvers, acceleration perturbations
due to winds and turbulence. etc.. as simply a sample trajectory as long as the trajectory
acceleration profile can reasonably be described by the chosen statistics.

Let us first consider the prediction transition matrix. If we again assume that the
actual state obeys the relation

X(t+t,) = Pt ) x(t) + w(t+¢,.1) (8.3)
then. if we are given an estimate X(t). the expected value of X(t +t,) is simply
R+t /t) = d(ty) X(t/0) (8.4)
since w is a zero mean random variable. Notice that we have used additional notationon w
to indicate that it is integrated over t,. It is quite easy to confirm thai the transition matrix
also yields the minimum variance linear prediction. Suppose we assume some transition
matrix (say A) which we want to determine so as to yield the minimum prediction error
variance, L.¢.. we assume
X+ /t) = A(ty) x(t/0) (8.5
The prediction error is then
Et+tpit) = X(t+0t) - x(t+t,)
(8.6)

= Alt) X(t/1) - D x(t) - wit+1,.¢)

and the prediction error covariance is
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P(t+1t,it) = E [e(t+t,]t) €T (t+1,|0]

[Alty) - ®(t;)] 2(0) [A(ty) - ¢ )IT (8.7

+

Alty) P(Lit) AT (1) + Q(t,)
The matrix S2(0) is the covariance of x where
QM = E [x() xT (t +T)]

is the autocovariance of x which can be related to the transition and process noise matrices
by taking moments of Equation (8.3), i.e.,

2U0) - d(t,} A0 DT(ty) = OAL,) (8.8)
and
Q) = d(t,) U0 (8.9)
Using the techniques described in Gelb (1974). we construct the cost function
J = EleT(t+1,/)Se(t +1,/0)] (8.10
where S is uny positive semidefinite matrix. Choosing S = 1. we find
J = trace [P(t+ /1)) (8.11)

It is a relatively simple exercise to confirm that the necessary and sufficient condition to
minimize J is to choose

Alty) = d(t,) (8.12)

We find. therefore, that the minimum variance predictor is also given by the transition
matrix. The position prediction equation is then

R (4,70 = X (K1) + (0

(8.13)
+ K30/ 72 lexp (- ty/ry) + ty/ry - 1]
which is the double integral of the prediction ar celeration
K3(t+tp/t) = X3t/ exp (- ty/rp) (8.14)
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Notice that we have introduced another parameter, 7, which is the acceleration time con-
stant we want to use for prediction. This value does nct necessarily correspond to any pre-
vious parameters since, as mentioned in previous sections, the filter does not assume any
particular value of the maneuver frequency but instead assumes an upper and lower bound
of a range of values. The cuthor, at one time, attemiyi-d to determine a value of 7, on line
(i.e., during real-time execution) or adaptively, but to (:ate no satisfactory technique has
been found. It still appcars feasible, however, to estimate an appropriate value of 7, based
upon the state ol convergence of the adaptive filter and additional work in this arca might
be productive.

In the absence of such a technique, however, it appeared more promising to use an
expected value

1, = Elry] (8.15)

where the expectation is taken over the target scenario. At this time. a valueof 7, = 5
seconds appears most reasonable to the author. It should be noted that the actual value o)
the predictor is rather sensitive to the choice of 7,,, as can be seen in Figure £.1. The ac-
celeration at t = 15 seconds is assumed to be known as 4 yards/second2. By choosing dif-
ferent values of 7, (from zero to infinity). we find that the actual predicted position (say

for t, = 15 seconds) varies by several hundred yards. If 7, is zero, we essentially zve using
constant-velocity prediction, and conversely, if 7p becomes very ‘arge (or frequency ap-
proackes zero). we predict a constant acceleration path. For vatues in betwesn zero and
infinity. the predicted acceleration decays exponentially, and th- ~ath eventually approaches
a constant velocity --but not the same path as if , = 0. Notice that the exponential accelera-
tion equation always predicts a path somewhere between constant velocity and constant
accelerction and can never cross these bounds.

A study conducted by the author. Clark (1973). compared the three predictors
(Equations 8.1, 8.2, and 8.13) discussed in this section. The results indicated that, while
for any given trajectory. either constant velocity or constant acceleration might be the
best. the exponential acceleration predictor was consistently the ove. 2! best (considering
root-sum-square prediction error). This result should be expected since the exponential
acceleration matches the acceleration autocovariance of the scenario n:uch better than the
other two predictors.

Before continuing the filter development, it is interesting—and very disheartening to
consider re;distically the type of prediction crror likely to be experienced by a gunfire
control system: against a “‘randomly” maneuvering target under conditions of perfect filter-
ing (where we assume the current filter error covariance vanishes). The standard deviation
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oi the predicted position error is due only to extrapolated process noise. That is

a0y (t +tp;t) = \/ Ullp (8.15)

where Qpyp is calculated from Equation (4.16). In Figure 8.2. this quantity is plotted as a
furiction of prediction time t, for a low, medium. and high set of the parameters o, and

7y . These results are consistent with those obtained by simulation against targets with the
same maneuvering characteristics. When we consider these values in ligid of the ¢tivotive
radii of lethality of various projectile/target combinations, we must vonciude that ihe oi-
fectiveness of such gun systems (using unguided projectiles) at long ranges is certainly
questionable. In fact, this unfortunate situation is the primary factor limiting the effective-
ness of current conventional gunfire control systems.
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% The eventual deployment of a terminally guided projectile with significantly larger
acquisition “*baskets’ promises a corresponding increase in the effectiveness of gun systems
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against mancuvering targets. The random acceleration model. as developed in this paper, is
not intended to be a *‘solution™ to the gunfire control prediction problem. It is really only
a more realistic approach to the problem, as opposed to the derivative polynomial models,
and it is felt an improvement. The author and his associates are currently investigating new
prediction techniques that hold the promise of significantly improved prediction accuracies
for particular targets. A report on these techniques is expected to be published in the near
future.

IX. THREE-DIMENSIONAL CARTESIAN FILTERING

All discussion to this point on filtering and prediction have dealt with one-dimensional
estimation of target motion. The rationale for this approach was to maintain a level of
simplicity in the presentaticn as long as possible. Obviousiy, the multidimensional aspects
of the problem actually had to be considered at all times during the developrrent. In this
section. we will concentrate our attention on this subject.

Several factors relating to the application must be considered in selecting a coordinate
system for filtering and prediction. Primary consideration must be given to accuracy. since
this is a iire control problem. and computational simplicity, since the algorithm must be
implemeated within the constraints of a given computer. The seusitivity to various non-
lincar effects. we shall find. drives the selection based upon these factors. Special types of
measurements (such as Doppler range rate) or the existence of multiple rates between the
polar measurements would influ 'nce this decision but are not present for this application.
A factor which is important in this instance is the reference coordinate system required for
actual filter input and predictor output. The requirement for stabilized (pitch and roll
corrected) measusements with u common reference point on ourput can be effected with
fewer and simpier transformations in the Cartesian frame, but this factor is not of primary
interest. The first two factors. accuracy and computatioral burden, were therefore the
driving forces for this study and will therefore be considered in depth in this section.

‘The study presented in this section is based on two premises:

(1} Mceasurements of targel position e obtained in spherical polar coordinates, i.c..
slant range (R), bearing angle from north (B) and elevation angle (). it is assumed that, as
designer of a filier/predictor for a given fire control system, we have avail:ble “ressonably
good™ estimates of the quality of these measurements. i.e.. measurement error variances
and correlations in the original (polar} measurement frame. It is also assumed that the de-
signer krows the availability of this data such as the range of pessible data rates, the velu-
metric coveruge of the sensor. any spatial variation of the mezsurementi esror statistics (due
to such effects as multipath). and estimates of any target induced errors such as glint and
scintillation.
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The polar<Cartesian transformation equations are:
x] [rsin BcosET]

x =y =rcosE:osEl=5c5,) 9.1)
2§ irsinE _j

where x is east, y is north and z is vertical. The corresponding inverse relation is:

r‘k \/xz +y2+25
xp =1 B |=] sarctan(x/y) |= xp(Xc) 9.2)

H

E Larc sin (z/r)

(2) The target is assumed 1o be modeled **best™ in Cartesian coordinates. By this, we
mean that the target is more closely linear and well behaved in Cartesian ~oordinates than
in polar coordinates. For example, let us consider simple linear target motion which is
canonical in Cartesian coordiaates.

dx/dt = v, = Constant (9.32)
dy/dt = v, = Constan* (9.3b)
2z = 0 = Constant (9.3¢)

Using Equation (9.2). we find that second (and all higher) derivatives appear in the
polar frame as

d? rjidt? = r(dB/d1? (9.42)
d2B/de* = - 2 (dB/deXdr/dt)/r (9.4b)
dB/dt =(x * v, -y * v (9.4¢)

The auihor refers to these second derivatives as “apparent accelerations™ and they ar -
described in the literature, such as Monzingo (1972) who calls them “psuedo-mancuvers™
and Cantrell (1973). These accelerations, if viewed in the polar frame, must either be
modeled and propagated nonlincarly by the filter/predictor or. even worse. tracked adap-
tively. Notice also, in Equation (9.4). that any crossing component can prodiice very high
angular rates if r becomes small. There arc, of course, corresponding polar canonical targets
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such as motion along a ray or circular motion ceniered at the origin. Examination of the
target scenario indicates. however, that such motion would be encotatered much less fre-
quently than the nominal Cartesian motion.

Perhaps the “best™ target coordinate system of all would be one translating with the
target and oriented appropriately slong the (changing) velocity vector and two normal ac-
celeration directions. Such a coordinate system would be very cumbersome to implement,
however. and would not change the fact that a basic nonlipearity exists between the meas-
srement frame and the target motion frame. We will therefore assume that the Cartesian
random acceleration target model, where the maneuver level and frequency lie within the
previousiy described boumts. represents the true target and proceed on that basis. To form
the Cartesian target model. an additional assumption of independence of target maneuver
between channels was made. That is. we define the three-dimensional Cartesian siate vector

Xpe = ixyz)7 19.5)
where X. v. and z are cach ene-ditnensional thiee-clement state vectors (position. velocity. and

acceleration) governed by the radom accelerati::n model of Scction IV. Tae transition
matrix is then

!’é 0 ¢
4‘3{)(* =I 4] ¢ 0 {9.0}
L) 0 ¢

where ¢ is defined by Equation (4.8) and the process noise is

Q o0 0
Qipe =10 Q 0 .0
[0 0 Q

where Q is given by Equation (4.23). The assumption of mancuver coordinaie independence
is weak but depends upe.s the parté sular type of target and its particular angular orientation
in the coondinate system. The probicm can probably be resolved by modeling the target in
thie moving target frume (mentioned previously) or by cross-correlation studies. Clearly.

the target motion ana'ysis probiem is ene that requires much additionial atteation.

Starting with premises (13 and (2), i2 becomes immediately obvious that there are 2
startling number of different Glter configurations, both optimal and subog:imal, that enc
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cun construct. Primary classificaiion of thuse configurations will be by coordinate system of
the state vector. We then considered three classes: (A) Cartesian: (B) spherical polar: and
(C) hybrid (a combination of both). The details will be presented here only for the Cartesian
portion of the study since a suboptimal version of this class was ultimately chosen. The
performance criterion was again chosen to be the average (integrated) predicted position
optimality ratio

k=kT :
o ima {t, +1,/t )
0y T) = o= Y it kP (9.8)
kT = 03D Acwallly +8,/t)

where o3 is the root-sum-square of the three predicted position error coordinate values.
Based on the premises of this study. we will now proceed to form filter configurations and
test the performance of each.

A. OPTIMAL NONLINEAR FILTER
Given the Cartesian target model which is obviously linear in the Cartesian frame. the
use of polar measurements implics that the measurement update step will contain the non-
lincarity. Now we will model this nonlinear measurement and construct an optimal non-
linear filter. The three-gimensional polar measurcment is
zp = [t BE]T + Yp

o L] k3
‘fx- -}-y-E +Z‘

arsqanix/y) B v, vg v 7 LAY

_arcsin (2/r) |

with measurement error variance

o7 9 0
Ry =1 0 d§ 0 .10
0 0 of

asseming no cross correlation of polar errors. Equation (9.9) is clearlv of the general non-
lincar form
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2(k) = h(x) + V(k) (9.11)

which can be treated by using the “iterated extended Kalman filter.” The extended Kalman
filter lincarizes h(x) aboni the extrapolated c¢stimate and uses the Jacobian to obtain the
filter update. The iterated filter simply repeats the process each time, linearizing about the
most recent estimate. Details of this general technique will not be presented in this report
but can be found in Jazwinski (1970). An important point is that the iterated extended
Kalman filter, if nendivergent. tends to remove those estimation errors which are caused
by sysiematic and/or observation nonlincarities. By iterating until the changes between
successive estimates and covariances become arbitrarily small, one approaches. as closely as
desirable. the optimal estimator for the nonlinear situation. This is the technique utilized
in this study to stablish the optimal or standard against which we will compare various
admittedly suboptimal filters.

B. COUPLED LINEARIZED FILTER
Another approach for three-dimensional Cartesian filtering involves utilizing the
polar/Cartesian transformation to nonlinearly combine the polar observations to form
Cartesiai measurements. The three-dimensional measurements are given as
X rsin Beos E

-2l yvl=l rcosBeosE |+ v¢ (%.12)

_! rsin E

by

with obsxervation matrix
i 00000060O0
H- =6 001 006900 (9.13)
6000001 060

A problem arises since. although we input the exact nonlincar measurement, it is dif-
ficult or impossible to compute the exact nonlincar measurement error vatiance. In order to
estimate R corresponding 1o Equation (9.1 2), we resort to linearizing the measurcment errof.
The sensitivity to the apgroximatior error of R should not be high as we found in the meas-
urement error sensitivity <i-ves in Figure 6.3(b). To form this lincar approximation, we
first must lincarize th- »se~arement crror. Differentizting Equation i9.12) and replacing




the differentials by “‘deltas” representing the finite observation errors, we find that the
linearized Cartesian errors are equivalent to a simple rotation of the polar errors.

VX
Yoo S} wl=Tix)y, (9.14)
V2 J
where the lacobian is
>BeE reBeE -rsBsE
T(x}) =fcBeE  ~rsBeE -reBsE (9.15)
L sE 0 0
using s and ¢ te represent sin and cosine.

Again assuming ne cross correlation of polar errors. the linearized Cartesian measure-
ment Crror ¥ariance is

Ree = Tix) R, TF (0) (9.16)

For reference purposss, the clements of Rep will Be writien out.

o = sBicEZ o} + r2cB? o] + r2sBsE? o} (9.1721
0] = cBcE! o] + 12sB? o] + r2cBAE? of (9.17b)
ai = sk o} + r2cE? a%_ 9.17¢3
ay, = 0y, = sBcBlof ck? - 12 6} + f3sE2 0f) .1 7ds
0.; = 0,\ = sBsEcE (0} - 2 0] ) (9.17c)
0y, = 0,y = ¢BsEcE (0} - r? 0}) 9,170

it should be noted that there is a slight discrepancy between Equations (9.16) and (9.17).
Everywhere in Equation (9.17) that a§ appean. there originally was ai vos? k as calculated
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from Equation (9.16). The reason the cos? E was omitted is that the quantity ai cos? E
actually is the value that remains constant in the tracking system over the range of elevation
angles from 0 to 90 degrees. The angular resolution is really constant in the dish frame.

i.c.. in the polar ccordinate system that is aligned with the sensor axis. As one traverses
from zero clevation to 90 degrees. the “closing™ of the fixed polar frame at the pole singu-
Iarity causes 2 fixed crror in dish frame to subtend 2 greater bearing angle. This behavior
gozs as the inverse cosine of clevation. All we have done then is to substitute for u% the
value o}, fcos? E (subscript D stands for dish): the inverse cos? E cancels with the cos? E
that appears in cach cquation with o - and the subscript D is emitted and Equations (9.17)
are obtained.

While maintaining that the sensitivity analysis provides the ultimate test of the sub-
optimality of a particalar filter configuration. it was also felt that the validity of the error
linearization in Equations (9141 and (9.16) were central to the problem and that further
study of this approximation would shed light on the sensitivity resuits. With this in mind.
two simple tests rclated to the lincarization approximation were conducted. First, it was
desired to directly test the actual assumption of error linearity. i.c.. Equation (9.14). This
can enily be done by calculating the true nonlinear Cartesian error as

M T XX +%) - xo (xp) (9.18)

where the function x & given by Equation (9.1). The error duc to nonlinearity is then
simply the ditfercnce

e = ¥er - ¢ 9.19

Actual values of g were then caleulated over the range of coordinates of interest for the
GFCS

o g;’xriii'} r
0 rad | <X =|B|< (9.20)
O rad E Lx x
and. more importantly, over the range of polar noise
0 yards ¥y 40 vards
Qmrad | € vp =] ¥y | <| S mnad 9.2hH
L 0 mrad [ YE 8 mnad
98




which exceeds by perhyps an order of magnitude the level of error anticipated with the
actual tracking sensors. For the conditions o1 Equations (9.20) and (9.21). the maximum
difference between the linear error and the nonlinear error never exceeded 1.5 yards. i.e.,
Ini< 1.5 yards with the maximum occurring at a range of 35000 yards. It was concluded
that. whereas the linearization is used only for the specification of the measurcment ¢rror
statistics and not for the observations themselves, the effect of this approximation on sys-
tem performance would be negligible since (as we observed in a previous section) the sensi-
tivity to utilizing the wrong error statistics is minimal. It must alsv be kept in mind that
we can not really expect to be able to estimate the sensor polar statistics with nearly as
much accuracy in any case.

Another interesting test was conducted to evaluvate the effect of the nonlinearity on
the transformed Cartesian distribution functions. In this test. at positions over the range of
coordinates of (9.20). one thousand points each of polar noise were generated and the
corresponding nonlinear noise values ve calculated by Equation (9.18). The chi-squared
test was utilized to evaluate the normality of the crrors. Chi-squared was first calculated for
the original polar noise vp (the values summed for the three coordinates) and then for the
corresponding sequence of ve. The results were at first very surprising since for every
noise sequence, chi-squared was less for the noalinear sequence ve than for the original
polar sequence vp. indicating the nonlinearly transtormed Cartesian noise was more nearly
Gaussian than the original polar noise. In retrospect. however, the reason for this is quite
simple in that. to the extent the linearity of Equation (9.14) is valid. the Cartesian erre.s
are simple linear combinations of the polar errors. Of course, linear transformations of
Gaussian distributions are also Gaussian (see for example. page 94 of Bendat and Piersol
(1971)). We would therefore expect by the Central Limit Theorem (on c¢ir) that the Cartesian
errors, being approximately lincar sums of the polar Gaussian random errors. would display a
tendency to be Gaussian also. Indeed. this 1s what we observe trom the chi-squared tests.
This further reinforees the author’s contention that the linearization provides an excellent
approximation, and given that the input polar observation errors are Gaussian the corre-
sponding Cartesian errors should also be Gaussian. (Note that it is possible to analytically
describe the true nonlinear Cartesian distribution function given polar Gaussian noise by
using the Jacobicn of the transformation. Unfortunately. the author was unable to simplify
the result into a form that is recognizable for purposes of interpretation.)

C. UNCOUPLED LINEARIZED FILTER

The two Cartesian filters presented so far have resulted in ninth-order state and co-
variance systems. Upon examination of the previous filter equations. it becomes immediately
obvious that the only terms which couple the tiree directions are the off-diagonal term of
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the R matrix since the target dynamics were assumed uncoupled. If the off-diagona:
terms of R¢ are assumed to be negligible (an assumption to be tested shortly), then the
system can be represented as three third-order systems (or ‘‘channels’ as we cali them).

This results in an enormous reduction in the computational burden if it can be accomplished
without serious degradation of performance. In fact, the computer time utilized on the
CDC 6700 for each implementation was monitored and the uncoupled filter found to be
less than one twentieth the other two.

Again. it is interesting to directly test the validity of this assumption so that we might
better understand the results of the sensitivity analysis to be presented. A very bricf con-
sideration of the off-diagonal measurement covariances, Equations (9.17d-f), is very in-
structive. For example. each cross term is weighted by a factor of form

Sin A Cos A

=
I

0.5Sin 2

It is very easy to sce that the maximum value of a is 0.5 and its average magnitude or root-
mean-square is only 0.125. Since the remaining factors are no greater than the diagonal
variances. this means that the cross-correlation coefficients will not exceed these values.
Further examination of the terms in parentheses is even more revealing. Notice that these
terms always algebraically subtract. thus tending to further reduce the correlation coef-
ficients. In fact, for typical values of polar sensor statistics, the cross covariances all com-
pletely vanish at a range

Is = orlak

where g, is the angular (bearing or elevation) standard derivation. Depending upon the
particular sensor (and other conditions), rg should usually be between 1000 and 12000
yards, with approximately 5000 yards most likely. Clearly, this range of rg coincides with
the tracking ranges of interest for Naval gunfire control. For all these reascns, we would
expect the cross correlation of channels to be very weak and the suboptimal uncoupled
filter to be close to optimal in performance.

D. SENSITIVITY: TEST CONDITIONS AND RESULTS

In order to evaluate the sensitivity of the two suboptimal filter configurations, a set of
test conditions specifying polar track sensor statistics and targets must be chosen. Two
hypothetical track sensors were parametrically determined in Table 9.1A. An older
“sloppier” radar called Sensor **A’’ track; to only 3 milliradians and suffers from serial cor-
relation of bandwidth 1.88 Hertz due to the absence of off-axis corrected tracking. A newer
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Table 9.1A. Track Sensor Statistics
Sensor A = Sensor E
5.0 o, (yards) 5.0
3.0 og and o (milliradians) 1.0
0.0 1. (seconds) 0.0
0.3 ‘rg and 7¢ (seconds) 0.0
Table 9.1B. Target Charactenstics
MANEUVER STATISTICS
Maneuver Frequency wym = 1/20seconds™!
Nonmaneuvering Target oma = 0.1 yards/second?
Maneuvering Target “B” omp = 5.0 yards/second?
g
1 NOMINAL TRAJECTOR
.r Closing Target r = 17500 to O yards
!
, Crossing Target X = Constant = 2500 yards
!
* Y = - 7500 + 300 - t
VELOCITY Mach Number = 1.0
TARGET FLIGHT TIME T = 50 seconds
1
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“tighter™ radar called Sensor “E” adds one milliradian of white noise. Both sensors track
with 5 yards of white noise in range. The targets are specified by choosing random maneu-
vers with given statistics superimposed upon a nominal straight-line target with given speed
and orientation with respect to the ship. These conditions are presented in Table 9.1B.
Two levels of oy were chosen to represent both muneuvering and nonmanecuvering targets.
Two nominal transonic target paths were chosen: onr closing directly from an initial range
of 17500 yards: and one that crosses with a point of closest approach of 2500 yards. Fifty
seconds of target track data were assumed to be supplicd for estimation and prediction
purposes.

The sensitivity test results shown in Table 9.2 are given in terms of the prediction
criterion of Equation (9.8). First. consider the performance of the coupled linearized filter
relative 1o the optimal nonlinear filter. In Section 7.B.. we discussed and presented some
auxiliary results which indicated that the linearization approximation was quite accurate for
our application. If this lincarization were perfect. the linearized coupled filter would be
optimal. We find that. indeed. using our criterion of optimality. there is essentially no dif-
ference in the performance level of the coupled lincarized filter relative to that of the
optimal nonlinzar filter. We also note that the performance is a strong function of the
sensor statistics, which of course we would expect since the accuracy of the linearization is
a function of the error level itself. The author therefore concludes that the linearized filter
is an excellent approximation to the optimal nonlinear filter.

Table 9.2, Three-Dimensional Sensitivity Resuits

0 (Lincarized/ 0 (Uncoupled/

Track Sensor Mancuver Level Target Optimal) Coupled
A A (Low) Closing 0.994 0.956
A A tLow) Crossing 0.994 0.961
A B (High) Closing 0.998 0.978
A B (High) Crossing 0.9985 0.993
E A (Low) Closing 0.99984 0.978
E A (Low) Crossing 0.999996 0.995
E B (High) Closing 0.9999998 0.997
E B (High) Crossing 0 9999996 0.9997
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Now let us consider the uncoupled lincarized filter. This filter is most important since
it results in a significant computational advantage. Since the linearized coupled filter is so
close to optimal for our problem. we compared the uncoupled filter to 1t to measure
optimality. (Presumably, one might estimate the criterion for this filter relative to the
optimal nonlinear filter (if desired) by calculating the product of the two values of 0 al-
though the author does not prove this.) We find that the drop in performance is more
noticeable for this case but remains within a few percent of thie optimal for all cases. Again,
for the improved E track sensor, the difference is essentially negligible. The author there-
fore concludes that. due to the significant computational advantage enjoyed by the un-
coupled lincarized filter and to the relatively small loss of optimality of this design. that it
is to be recommended for implementation. It is also felt that other conditions. such as
imperfect target motion modeling and inaccurate knowledge of sensor error statistics, could
result in more significant performance reduction from the optimal performance level. This
same conclusion has been reached by other rescarchers such as Cantrell (1973) and. in fact,
independent Cartesian filtering is presently employed in all U. S. Navy FCS for major-
caliber guns.

E. POLAR AND HYBRID FORMS

As mentioned previously. since the uncoupled Cartesian filter was the one ultimately
chosen for implementation. the details of work on the other forms will not be presented
here. A brief discussion of the polar and hybrid forms is indicated. however. since they are
both interesting to compare and contrast with the Cartesian filters.

The spherical polar state vector is
Xp3p = lrt T BBBEEE|T 9.2y

The kinetic relationship between x5 and x.3p can be obtained by doubly differentiating
the nonlincar transformation Equations (9.1) and (9.2). The dynanic relationship is then
determined by substitution into the three-dimensional Cartesian target motion Equations
i2.5-73. As might be expected. this manipulation is quite tedious. The resulting polar
dynar.iic 2quations are highly nonlinear with rather strong coupling hetween coordinates.,
Thie stute extrapoiation can be offected exactly however,

Untoriunately. it was not possible for the auithor or his associates to determine the
exact nonlinear extrapetation for the error covariance, and it was fesessary {0 linearize and
iteratc again in order to construct the opeimul nonlinear polar filter. The update processin
potar coordinates is, of course. lincar and posed no problems. Of course. as far as perform-
ance is concerned, the optimal nonlinear filters in both coordinate systems are exactly
equivalent. 1f onc were determined to implement an optimal nonlinear filter. then ihe
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choice of coordinate system would be based upon other considerations such as computaticral
burden. This conclusion is essentially identical to that of Monzingo (1972) who decided
that both approaches could be made to yield comparable track accuracies.

The basic computational problem centers upon the relative degree of cross coupling
and norlinearity (however one might define such an effect) between the noniinear ugde.
step for the Cartesian filter and the nonlinear extrapolation step for the polar filter. This
relative effect is clearly a function of the particular application and would detcrmine tic
number of iterations required to effect convergence. For example, for long-1ange tracking
of reentry vehicles. Mehra (1971) found that the update nonlinearity was more severe than
the dynamic nonlinearity for the assumed conditions of that estimation p:oblem. This
could be expected since. as mentioned previously, the observation error conteurs are very
distorted at long ranges and the reentry vehicle dynamics does not usually involve high
angular rates. The author suspects (but did not demonstrate) that the opposite is the case
for our application. (1t should be noted also that the observations with the phased-array
radar in Mehra's paper were not of angles but of direction cosines for which the nonlinearity
is different.) It is also accepted by many. including the author ana Monzingo (1972), that
the independent {unconpled) suboptimal polar filter could degrade seriously at close ranges
due to the neglect of the “apparent accelerations™ mentioned previously.

The concept of the hybrid filter is simply an attempt to minimize the effect of the
nonlinearities and to use the best (most linear) parts from both the Cartesian and polar
filters. The state vector for this filter is mixed (hence the term “hybrid™)

» e

xyzp SIPBEXxX yyzzlT (9.23)

The only nonlinearity that appears for this filter is with the extrapolation of polar
positions since the other state variable extrapolations and the update are linear. The error
covariance matrix is still full (9 X * and must be linearized for the extrapolation step.
Additional work wisth this filter is t-quired before conclusions can be made but it remains
an interesting concept. Variations on this filter have been conceptually explored and in-
clude a rotating Cartesian filter with origiit maintaiaed at the current estimated target posi-
tion and orientation such that one axis is aligned vith the ray and the orthogonal axis
aligned tangent to the sphere in the directions o bearing and clevation. Clearly, additional
investigations are needed if one is to make definite conclusions as to the advantages (if cay)
of these ideas.

X. SUMMARY AND RECOMMENDATIONS

Thiz section is intended to give the seader a brief overview of the studies, results. con-
clusicns. and areas for future work contained in this report. Sechion I presents the reader a
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brief introduction to the fire control problem and the basic considerations attendant to
“front-end™ (filter/predictor) design. Section Il introduces the concepts. notation and

cquations of the Kalman filter with particular emphasis on reasons for its choice in this
application and information required to construct a filter of this type.

The next six Sections (HI-VIII) deal exclusively with modeling and paramairic be-
havior for one-dimensiona! filtering and prediction. The derivative  ‘lynomial targe: model
was first explored (Section 111) since it is undoubtediy the most common and familia: and
parametric behavior of a rather fundamental nature was unavailable for this simple model.
Convergence studies :ndicated that constant jergue and higher-order filters could not be
considered for this application—at least as the principal filter—since they take an unaccept-
able amosnt of time 10 adequately settle. Quantitative relationships of filter convergence
with polynomial order and observation data rate were determined. The problem of dealing
with 2 maneuvering target with unknown strztegy led us to consider the random acceleration
target model in Section IV. The author found this model particularly appealing since it
statistically recognizes and acknowledges this lack of informution and enables one to directly
relat= the targe: mancuver parameters tacceleration level and ficquency) to the Kalman
filter bandwidth and pe rformance matrices. 1t was demonstrated that this filter converges
faster thon the constaa: acceleration filter and. in fact. tends to display behavior somewhere
between the constant-acccleration and constant-velocity filters. This model is particularly
valuable in that it enabies the user 1o determine fundamental limitaiions concerning the
ability to filter and preaict a mancuvering target path. Additional work on target motion
analysis. especiolly from a three-dimensional point of view, is recommended.

Concepts of divergence prevention and adaptive Kalman filtering are considered in
Section V. A discussior: of divergence and the bandwidth tradeoff is followed by the devel-
opment and analysis of the use of residua? analysis as a maneuver detection tool. Having
a divergence detection technique in hand. *vo concepts of adaptation are developed. The:
advantage of the dual-bandwidth over the single-variable-bandwidth adaptive filter are
oresented along with the particufar adaptive scheme tecommended for impiementation. The
dual-bandwidth concept is particularly attractive since both narrow and wide bandwidth
filters are always in operation and the adaptation algo:ithm merely selects the output state
vaetor according to the monitored performance of eacr. Additional work relating to
advanced adapration techniques such as multi-bandwidth paraliel or cascade filter banks
with hyvpothesis iesting or residual analysis and sce aced < 2?ivity adaptive designs dre
strongly reccommended,

The problien of _erially correlated observation ¢ s is treated in Sectien VI A cor-

relution model and muhified Kalman filter and sensitivity algorithm are developed. and
results pertiining to obuervation crror statistics are presented.
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It would probably not have Lees possible to actually implement these Kalman filter
designs on a real-time, fixed-point siini-computer if it were not for the prefilter and square-
root covariance techniques developed o Section Vil. The data compression work in partic-
ular is critical. and more advanced state-of-the-art techniques should be explored in the
future since the payoff in reduced computation is so great with a successiul design.

The predictor, of course, is the ultimate product & »« . om front-end (target sensor
plus the filter) so a special section (VIII) was ded::avzc %t m of predicior design.
After demonstrating that the minimum varance pred.. "t .. oy the transition matrix,
the semitivity of the predictor to the choice of accelerati.r: .ne constant and prediction
accuracy for the limiting case of perfect filtering was discus d.

Finally. in Section IX. the results for the one-dimer< - * “lter work were tied to-
gether into the three-dimensional filter design. After dever. Jing the optimal nonlinear filter
as a standard, it was shown that the linearized observation e:tor covariance approximation
is quite accurate for our purposes. and that, by paying only a small cost in performance
degradation by neglecting the cross-correlation terms, the three-dimensional filter can be
decoupled with a dramatic reduction in required computational load. It is recommended
that additionas: work on hybrid and polar filters be performed along with the target motion
anslysis problem with the objective of further performance improvement foremost in mind.

The final vession of the FORTRAN mode} incorporating all the features discusscd in
this report is found in the Appendix.

While it ts felt that many improvements, even of @ fundamental nature, can be fuade i0
this filter design. this model represents the bast that the author, with the sid and advice of
many associates. could achieve to date. It is believed-or at least fervently hoped - that this
model represents an advance over existing filter/prediciors currently employed for weapons
control purpyi<es.
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RANIACM - This subroutine gencraies a Gaussian random number with zero mean and unit
standard deviation. 1t uses uniformly distributed random numbers, generated by the
CDC system routine RANF, to compute a ncrmally distributed zumbecr.

CORNUM - This subroutine generates the ith value of i sequ-rnice of exponentially autocor-
related Gaussian random numbers with 7270 mean. The output of this algorithm,
medeled as a first-order Markev process, 13 equivalent to a low-pass filter with cutoff
frequency = 1/(2xr) Hertz driven by white Gaussian noise. The sampling frequency is
automaticatly adiusted to satisfv the Shannon sampling theorem. Additional details
z2nd d-cumentation of a similar algorithin can be found in 3alas (1967).
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SUBROUTINE CORNUACKXNOISE ;SIOGMETAUYDELTAT p IsNRHC»SIGHAM)
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CORKAL - This subroutine is the general (matrix) version of the Kalman filter which has

been restructed to accept serially correlated measurement error. The model and
algorithm development are presented in Section VI. The matrix equations which
this algorithm computes are shown in Table 6.2.
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